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ABSTRACT

Brillouin scattering measurements have been made on
tiiglycine sulfate near its Curie temperature. Temperature and
field dependent single relaxation time aconustic velocity dispersion
was found in confirmation of the predictions of a simple free
energy expansion theory of the dynamics of the strain and

polarization fluctuations near T This theory is developed in

c
detail following O'Brian and Litovitz who first combined the
Devonshire theory of ferroelectrics with the Landau-Khalatnikov
theory of the relaxation of the order parameter to treat sound

absorption near T , in triglycine sulfate, This new treatment of

the theory was abli to account for the anisotropy in the coupling
of the strain and polarization fluctuations, the field d=pendent
relaxation raie observed, and the anisotropy in the relaxation rate
for directions between the ferroelectric axis and the plane

perpendicular to it. We found our observations fit by

- 1 =
(AT, E= 0) 1, (3.4 £10%) x 10'0 (TC - T) sec 1 and

1 -1
P Ez/3 gec™" with AT in C0 and E
inkV/em. From v (AT, E = 0) we find the kinetic coefficient

for the polarization fluctuations to be y = (4.1%10%)x 1012 sec-l.

r (AT =0,E}" = (2.0 £ 10%) x 10

Additional experimental results obtained for triglycine sulfate include
measurement of the acoustic mode velocities for all three modes for
variaus directions in the (010) plane, measurement of the longitudinal
velocity along the ferroelectric axis, a measurement of a reference
absolute cross section for Brillouin scattering in triglycine sulfate,
and determination of some of the Pockels coefficients from the

Brillouin component intensity in various directions.
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INTRODUCTION

This theslis is a report of a set of light scattering
experiments on a ferroelectric crystal in the regicn of its
ferroelectrlc phase transition. The aim of the experiments
was to study the dynamics of a2 sccond-order nhase transi-
tion 1In a crystal by means of the spectrum of light scat-
tered from it near the phase transition temperature,

The crystal chosen for study was triglycine sulfate.

It turned out to be a rather classic case. The effects
observed were weak and therefore were easily separated
for interpretation. There were no interfering anomalies
in optical dielectric properties near the trensition
temperature. A1l *he observationeg could be understood
on the simple baaie of exyvanding the free energy about
equilibrium values of the thermodynamic variables,

The most important sections of this thesis are Sections
V and VI, They contain the new observation and interpretations
which are belleved to be important to the subject of phase
transitions.

The experimental data is presented in Section V. Our
neasurements show that two of the acoustic modes in the
plane perpendicular to the ferroelectric axis are coupled
to damped fluctuations and therefore show velocity dispersion
with a temperature dependent relaxation time. In addition
to observing this velocity dispersion from which we obtained

the relaxation rate we were able to observe the aseocinted
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acoustlic absorption by measurines the Brillouin component

linewidth as a function of temrmerature. BSuch measuremento
kave not becn made In crystals usine 1light scettering
prior to this. For the same modes thet showed velocity
dispersion and absorntion we found the new effect of a
fleld dependent dispersion and absorption with a single
relaxation time. From the velocity dispersion we deter-
mined the flield dependent relaxation rate. Also for these
modes we studied the anisotropy of the velocity dlspersion
in the plane perpendicular to the ferroelectric axis. We
found that the total dlspersion wass highly anisotropilc

but that the relaxation rate was the same for all directions
in the plane. We studled the third acoustic mode and found
it not to show relaxational dispersion with temperature

or fleld.

In Secivion VI we nresent the phenomonological theory
which accounts very well for our observstions. It was
previouly known that the Devonshire free enersy expansion
theory gave a good description of the static properties
of triglyocine sulfate. The present work showe that
together with the kinetic assumption of irreversible
thermodynamlcs the same free enerpy expansion accounts for
the dynamics of the strain =and polarization fluctuations,
Following the lead of O'Brian and Litcvitz we have gone
on to derlve 1n detall the consequences of the Landau-
Khalatnlkov theory of relaxation rates for second-order

transitions, In sdditlon to the previously derived




3
velocity dispersion with a relaxation time provortional

to (Tg =~ T)'l our analysis shows how tr calculate the
coupling anisotropy, that the pure shear moce in the
plane perpendicular to the ferrcelectric axis should not
be coupled to the relaxing fluctuations, and that an
electric fleld applied along the ferroelectric axis

with the crystal at Tc produces a velocity dispersion
with a relaxction time prcportional to E'2/3. All of these
results are confirmed by our experiments., In addition we
derived the anisutropy in the relaxatiosn rate o: polar-
ization fluctuatione for directions out of the plane
perpendicular to the ferroelectric axis by taking account
of the electrnstatic energy associated with the polariza-
tlon fluctuatione., This accounted for the observation
that the longitudinal mode along the ferroelectric axis
showed no temperature dependent relaxational dispersion
even though these strains are known to bYe coupled to the
polarization. Additional consequences of this last
derivation remain to be tested.

The first four sections form an expcsition of the
method of Brillouin scattering applied to the study of the
accustic modes in crystalline solids. It ie these techniques
which allowed the rather comvlete study of the fluctuations
in triglycine sulfste near TC' The purpose of Section I
1s ic present the simplest and most universal case of
Brillouln scattering, namely scattering from densgity

waves. This scattering le common to all condensed phases
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and usually gives the most intense componer .8 in the

Brillouin spectrum. In this section we indlcate how
the approximate scattering cross section for scattering fron
longlt dinal modes in crystelliine solids can be computed
from the refractive index and the elastic properties
of the material. 1In Section II we discuss Brillouin
scattering in ~rystals. Using the classical theory
of elasticity to derive the strain fluctuation dynamics
and the Pockels elasto-optic coefficients to relate
the dielectric fluctuatinon tensor and the strain fluctuations
we derlve scattering selection rules and cross sections
for Brillouin scatterinz with polarized light in birefringent
crystals, Specific aprlication of these hitherto untested
selection rules and intensity predictions 1s made for
triglycine sulfate in the Brillouln scatterl:g observations
presented in Section IV. 1In that section we show that
Brillouln scattering with polarized incident and scattered
light can be used to sort out and study all three acoustic
modes in the plane perpendicular to the monoclinic axis.
From these spectra we were able tc determine the acoustic
velocitlies and scme of the Pockels coefficients.

In Section III we describe the anparatus for observing
Brillouin scatterins in crystals with narticular emphasis
on our high contrast Fabry-Perot interferometer and the

nhoton couuting detection system.
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SECTION 1

INTRODUCTION TO LIGHT SCATTERING FROM ACOUSTIC MODES
OF CONDENSED MEDIA -- BRILLOUIN SCATTERING

All forms of matter scatter light but this scattering is usually

masked by the much stronger first ordar processes of absorption

and emission. Scattering is the basic electromagnetic interaction

for frequencies to which a medium is transparent. It manifests
itself in two ways. The forward scattering which is coherent with
the incident light gives the medium its refractive index. The
scattering in directions other than the forward directions is in
general inelastic and can be detected directly. This non-forward

scattering is the phenomenon which we will be concerned with and

will refer to simply as light scatterin~.

We will be interested in those low energy states of condensed
media (collective modes) which are coupled to the optical
polarizability of the medium. They will scatter light either when
driven externally, as in the Debye -Sears effect,lor when thermally
populated. By examining the spectrum of the scattered light we
study the dynamica of the fluctuations in pclarizability and hence

the dynamics of the collective modes.

Acoustic modes are collective modes found in all condensed
media. They correspond to the modes of sound propagation when
driven externally and to the low energy states of the medium in
equilibrium which are used in the Debeye model of the specific heat.
These modes usually are effective in scattering light and so give
rise to the basic features of the low frequency portion of light
scattering spectra. The proceas of scattering light from acoustic
modes is called Brillouin scattering after L. Briliouin who predicted
in a fundamental paper in 1922(2) that light should be inelastically

scattered by the Debye modes of a transparent medium.
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First we define the problem operationaity in terms of alight
scattering experiment. We will not be perfectly general in this
but rather choose arrz: gements which are useful in experiments.
The basic arrangement is shown in Fig. I1. A narrow beam of
monochromatic light with wave vector Eo and frequency W is
passed through material of dielectric constant € The volume of
the imaterial illuminated by the beam becomes vigible due to
scattering. We arrange to collect light from a definite length L of
the beam in a small solid angle about a direction at an angle 8 to
the incident beam. 6 is called the scattering angle. We describe
the scattering direction by the wave vector of the scattered light,

-

ks The scattering volume is L times the cross-sectionzl area of

the incident beam.

The scattering plane is the plane containing l?o and l?s' It is
most useful in experiments to have the polarization of the incident
light either perpendicular or parallel to the scatiering plane. We
will denote this choice by V or H, respectively. Similarly, we
analyze the scattered light into "vertically' and "horizontally"
polarized components. Denoting the incident polarization first and
the scattered polarization second we can have the following four

possible scattered intensity measurements: VV, VH, HV, or HH.

The scattered light which we have selected is now detected to
give the total scattering intensity or is spectrally analyzed and then
detected to give spectral intensities. Comparison of the scattered
power with the incident power, taking account of the collection
geometry, gives cross sections for the various processes giving

rise to components of the scattering spectrum.
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Fig. 11 Schematic picture of a light scattering experiment.
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Though light scattering ie a universal effect it is not normally
a etrong effect. Typically 10'6 to 10.8 of the light incident on a
sample is scattered (per cm of the sample) by acoustic modes.
Thus the light scattered from a beam of light in a material does not
make a very bright source for spectroscopic study. Here lies much

of the experimental challenge in light scattering.

With the invention of the laser and in particular the perfection
of continuous gas lasers we now have an ideal tool for high resolution
light scattering experiments with high resolution in frequency,

scattering angle, and polarization.

In order to understand light scattering processes in enough
detail to allow predictions of effects and interpretation of experimental
results we will review the results of theoretical calculations of the

scattering intensity.

Many derivations of the scattering intensity or scattering cross
gsection for Rrillouin scattering in isotropic media exist in the
literature. R In particular the modern treatments by Pecora(e)
and Landau and Lifshitz( 2 are recommended. The basic ideas and
perturbation technique remain those of FEinstein and Brillouin. Rather
than repeat the derivation we will give the result in a form uscful for

experimental work and with which one may guess the result for new

situations.

In an isotropic medium with average optical dielectric constant
€ s the cross section for scattering V (perpendicular to the scattering
plane) polarized incident light of frequency W into V polarized

scattered light with wave vector ks at an ar.gle 6 to l-(; is
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Fn (] () clai e v
Q © \dr C
where Ae(T, t) = €(F, t) -
q-r

V = scattering volume

ircident light frequency

€
1

(g]
n

velocity of light in a vacuum .

This expression is appropriate for dcattering in simple
liquids where density fluctuations give scalar fluctuations in the
dielectric properties. For these fluctuations the scattered light is
all V polarized. We note that the light scattered at an angle 6 is
scattered by a definite spacial Fourier component of the dielectric
fluctuation. Since the frequency shifts (wo-wa) involved in the

scattering are small, we may take the magnitudes of the incident

and scattered wave vectors equal giving

-

q=|q]= 2k  ein (6/2)

and a parallel to the bisector of the angle between k andk . This
o s

geometry is shown in Fig. I 2. The scattering is proportional to
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Fig. 1 2 Geometry of the wavevectors in quasi-elastic scattering.
k0 is the incident light wavevector., ks is the scattered

light wave vector and q is the scattering wavevector.
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the volume illuminated and preportional to the reciprocal fourth
power of the vacuum light wavelength as is characteristic of

quasi-elastic scattering from small scattering elements. The

< > brackets indicate a time average or equivalently an ensemble
average. This average is itself independent of time and can easily
be computed using the methods of thermodynamic fluctuation
theory if we know which variable is fluctuating and the dependence
E of the dielectric constant on this variable. For simple liquids we

have the standard results(m)

d¢
(R
8-5 T

2 KT
<Jp@[> = T 1.8 (a)
3
P A%

and

where ﬁT is the igothermal compressibility. It is an empirical
fact that essentially all of the scattering is due to density fluctuations

at constant temperature. Hence to a good approximation

4%y 1N (9 ) 2
o - (%) (T) LR B

We note that this cross section is proportional to the scattering
volume V as expected. This is the standard result for gcattering

from density fiuctuations in isotropic media.
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So far we have given expressions for the total scattering.

The spectral distribution is what we would really like to know
about.

The spectrum of the scattered light can be most rigorously
defined using the Fourier transforin of the autocorrelation of the
scattered electric field, This implies that the spectral intensity
at the frequency Wy is proportional to the Fourier transform of

the autocorrelation function of Ae(q, t) evaluated at

w = (wo -ws). Explicitly the spectral crosa section is

O o o s

4
99y lug) o

2 2
_g) Ja@ | >

a3 C
o)
—w

o)

with

where we define

-]

’ ! - ¥ -
2% -Y dt' el <Ace(g, t +t)Ae (q,t) >

- 0

"

<! AC(E) 'z >

The correlation function and its Fcurier transform are assumed

independent of time t since thermal fluctuations are random

stationary process.
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Suppose the correlation function has a time dependence cos (w(q)t)
(This would correspond to a niodulation of ¢ by some kind of
propagating collective mode). Then we find that the spectrum

consists of delta functions at
w = 2wlq) .

More realistically the amplitude of the collective modes will have

a finite lifetime + = lf' . We then get a pair of Lorentzians
2 2 .
= -~ 1 I
< lAs(q)'w |ae(q, t)] o 3

N
5 (wxw(@) +T

whose full width at half maximum is 2I ( Z denotes sum over

+ and - terms). Thus the spectral intensity will be centered at the

frequencies
= %+
Us W U(q)

We summarize these relations for three common correlation functions

in Table1 1.

These results have a very simple interpretation. The scattering
spectra are Fourier transforms of the time dependence of the properties
of the "phase grating" (the qth spatial component of Ac(T,t)) which is
"diffracting'' a portion of the incident beam. If the amplitude of this
grating decays then the scattered beam acquires a correspondingly

shorter lifetime i.e., it is broadened, If the grating is8 moving with

N
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velocity v(q) either parallel or anti parallel toa then the scattered 5
light is frequency shifted by the Doppler effect either down or up by =

w{q) = qv(}) radians/sec., respectively.

With these results let us now consider Brillouin Scattering
in simple liquids and isotropic solids. In particular we consider
scattering from density waves in these media. (These density waves
can al‘ o be called compressional waves or longitudinal acoustic
modes of the material. They are common to all condensed media. )
For the wavelengths of interest these waves are best described as
adiabatic density waves in liquids. We then have from the theory of
thermodynamic fluctuations of Fourier components of inhomogeneous

ﬂttctuations(u)

- 2
<lap(q)sl > = p2 kTP (q)
v

8 1
e oL

8 plviq) ] 2

with v(q) the velocitv of sound.

Thus the cross section for scattering from density waves in a
simple liquid is
4

do 2 [ 2
\A% 1 o
(%) (‘;) (1) kTg @) v .

This scattered light will appear spectrally as a doublet with

frequencies

we =W * w(q)
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where wig) =q v(q)

is the assumed Jispersion relation for these density waves. The
spectral cross section can tnen be written completely in terms of

experimentally determined parameters as

2 4
vy () (”) 1) KTV
d 4x c )
pv(q)
I'(q) + o T (q)

2 2 2 2
W =w - w(g) "+ '(q) W -w°+(q) + I'(q)

where I'(q) = ;l(a is the relaxation rate of the waves.

This last result is cumbersome so in the remainder of the
paper we shall merely calculate the totr? intensity scattered by a
particular mode into some scattering polarization and then recall
that this intensity is spread over a doublet with Lorentzian peaks
of full width at half maximum of 2T'(q) centered at the frequencies

= % i
wy =@ w{q)

The cress section for scattering from longitudinal modes
of an isotropic solid is very much like that for liquids. As a first
approximation we suppose that we can estimate the varistion of
the dielectric constant with compression as being the same as the
variation of the diele :xtric constant with density so that for a

compresaion: * strain x
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de d¢
5‘;{“") 5'? ~ (E-l)l

then we can write the cross section for scattering (VV) from these

modes as
2 4
Py - ) Yo} ep? KTy
dQ 47 c h P

where vLis the velocity of the waves.

We then empirically generalize this last expression and state
that one can probably get a reasonable estimate of the scattering
intensity from the longitudinal modes of any condensed medium
including crystals from the expression given. We have found that
the scattering intensities of various media do seem to follow the

ratios of intensity one would predict from the quantity

(c-l)2

2
YL

calcuiated from tables of elastic propertiey and refractive indices.
Having an estimate of the scattering intensity for at least one mode

& crystal is very v ~eful in designing and setting up experiments. It
should also allow estimates of the scattering eross sections for other
modes of crystals by comparison of intensities in experimental
spectral traces. Of course the above estimate will not be correct
for crystals such as MgOwhich have a negative pressure coefficient

of the index of refraction. (12)

e
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SECTION 1I

THE THEORY OF BRILLOUIN SCATTERING IN CRYSTALS

In thie section we wigh to give a detailed discussion of Brillouin
scattering in crystala. We will begin with a description of the acoustic
modes of crystals. We then dis-uss scattering from these modes
including the effect of birefringence of the crystals and the tensor
property of the dielectric fluctuations. Our aim is to arrive at an
experimentally oriented formulation of the scattering cross sections
equivalent to specializations of the very general result given by Born

a3

and Huang, In particular we wish to give some ''rule of thumb"
selection rules for telling which phonon polarizations (displacement
directions) can cause scattering in the different light polarization

spectra,

Acoustic Modes

We take as our model of acoustic modes in crystals the results

4

of the classical theory of elasticity. Thus we consider small

(symmetrized) strains

8

X :1_(8_‘1_1.-}, u)
8

1j 2 Brj r
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The internal energy per vrit volume is written as
U(Sx)=-1-c x. x .+ U (S)
*Hi0 2 i, kUi kK o '’

giving internal stresses proportional to the strain

X —ELI_ = C X
ij = 9x,. T 4§, kKL
ij S

where u = u(Tr) is the displacement of the point at T in the body, S is

the entropy per unit volume of *he body xij is the stress due to isen-
tropic strains, and cij, K ere the elastic stiffness constants.

The great amount of symmetry in the fourth rank tensor com-
ponents Cij, Kl reduce the number of parameters in this description to
a manageable size, Due to the symmetries of xij and the product xijxkl'

we have

i,k " Sk Cig,1k S, g5

Thus there are only 21 independent constants in the most general case,

The equation of motion is

I
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with p the dengity of the medium. Using the symmetries given

the equation of motion can be written as

32u

" k
pu, = ¢ ————
i 13, k1 dr Or

1§
We look for plane wave snlutions of the form
*ei(q-r - wt) .

E(;) =y

Substituting into the equation of motion gives the equations

2 -
(cij,qulqj - pw 611{)\1k =0

The problem 1s then seen to be a 3 x 3 eigenvalue problem with secular

equation

2
AN W -
°y, k1N - P(Zf) 6ikl 0

where ak are the direction cosines of q. This secular equation is a

cubic equation in the quantity
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whose three real, positive roots Cj = pvjz(a) determine the phase
velocities v j(c'i) for the three, orthogonal displacement plane waves
propagating in the direction ?; Thus for each direction a we get

three dispersion relations of the form

2, 2. 2
wj(ﬁ)—vj(a)q .

c.(q)
With v;"(a) =J-p— i=1 2, 3

It is this form of dispersion relation with w(g) =0 as q —~ 0 that
marks an acoustic mode. This form of dispersion relation gives the
frequency shifts observed in Brillouin scattering their characteristic

8cattering angle dependence for fixed g direction

Ay = = v(Q)q(e) = v(a)2kosin g

. 0
or Av < 8in =,
o

This dependence is to be contrasted to that for scattering from the
optical modes of vibration of a crystal where Aw is usually independent
of the scattering angle.

As a consequence of the angular dependence of the Brillouin

Gl
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scattering frequency shifts, measurement of the scattering angle
becomes an essential part of an experiment for which the spectrum
i8 to be related to the elastic properties of the medium.

Before further discussion we change to the matrix notatiorxuﬁ)

in which pairs ci subscripts are replaced with a single subscript

running from 1 to 6 as follows:

11 22 33 23 K) | 12

32 135 21

goes to

If we apply this subscript transformation directly to the stresses and
the elastic stiffness constants and define the six component strain
vector by the above transformation and

X,. =X m=1, 2, or3

2x,. = X m=4, 5, or6

then

21 "
U= 3 cijxixj ' UO(S)

and




< is now a symmetric 6 x 6 matrix relating the six component strain

to the six component stress.

In crystals the symmetry nperations of the various point groups
greatly reduce the number of non-zero, independent components of the
stiffness tensor. These recuctions are nicely discussed and summa-
rized in Nye(ls) for fourth rank tensors such as the stiffness tensor as
well as for tensors of other ranks.

We will be discussing acoustic modes in monoclinic crystals of

classes 2 and 2/m. They have the following matrix of independent

fourth rank tensor components indicated by heavy dots

—
. ‘ . . . *
® @ o o .
o * o °

® ®
® o ® L J
. ® . o
- —

For the stiffnesses this matrix is symmetric giving then 13 independent
components.

For comparison a cubic crystal has the metrix
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or three independent stiffnesses: °y’ c1 9 and c 44 (Connected dots

R ot s somesscrs

represent equal constants.) We note that a cubic crystal will appear

1sot ropic elastically if
2cgy = log -y

The three component eigenvalue problem for the phase velocities
and mode polarizations is given in a convenient form with the stiffness
constants in matrix notation by Mason(m. Using these formulas and
known elastic constants, it is a straightforward calculation to find the
phase velocities and displacement vector direction cosines.

To quickly see the physical significance of the elastic constant
matrix elements we chose a coordinate system with the x' axis along q

and tensor components transformed to this conrdinate system and then

reduced to matrix elements. Then the secular equation for the phase

LR
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velocities becomes
(c... - pvz) c c
11! 16! 15!
2

‘16 (Cggr - Pv) “56" =0 .
2

©15 561 (Cper = PV

C 6! and Clg give the coupling between compressional strains along
x' and shear strains in the x'y' and x'z' planes. If this coupling is
negligible then we get a pure lengitudinal mode with polarizationu
along x' and sz = cn/p. eg! gives the coupling between shear
strains in the x'y' and x'z' planes. If this coupling is also negligible
then we get pure shear modes with polarizations and velocities:

/p. It is very often the case

1 - 1 =
ujly', v 066/p and ujfz', Virg = Cge

that these off-diagonal elements are small compared to the diagonal
elements so that the modes are reasonably described as longitudinal
and transverse, Moreover Cyp is in practice always larger than
g6 °F o5 This simplifies the interpretation of Brillouin spectra
because we can always take as a first guess that the spectral compo-
nent with the largest shift is the (quasi-) longitudinal mode component.

As an example and for later comparison with our experimental

results we have calculated the velocities and mode polarizetions for
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a set of Edirections in the (010) plane of the crystal triglycine sulfate
using the room temperature (monoclinic class C2 phase) elastic
constants determined from ultrasonic velocity measurements. (The
elastic stiffness constants are listed in the Appendix.) The results are
presented in Table II 1. The only symmetry in these velocities,

v(g) = v(-q), shows that we need only calculate the velocities for half

the directions in the plane. The § direction is given in terms of the

M R A oo s scsasome

angle between q and the c axis. (The conventional axes and coordinate
systems of triglycine sulfate are given in the Appendix.) For this case

the dynamical matrix is

i ufiniiiitul)
>
>~

I

with

2
11 = S55 *+ (c11 - c55) sin“0 + clssinze

2 .
>\33 = Ceg + (c33 = c55) cos 0+ c3551n29
C +c
2 13 55
)‘13 = Cys + (035 - c15) cos 0 + —-—-2—-—~ sin20
N = i20+c c529+c 8in26
22 - ®5g%'7 44“° 46

il st

iliigniil
wmm,w-,,

T T

liitlaaikd




TOCTTTTN IRy

i i S

27
TABLE 1II 1

(010) PLANE ACOUSTIC MODE VELOCITIES IN TGS CALCULATED
FROM ULTRASONIC ELASTIC CONSTANTS®

(b) (c) {c) (d) -

© YL Y V2 G- U,
) iOscm/sec. loscm/sec. 105 cm/sec
-80 5.20 2.53 1.92 +.996
-80 5.30 2.58 1.94 +.098
-70 5.37 2.53 2.00 +.889
-60 5.39 2.39 2.07 1.000
-89 5.34 2.22 2.15 -.008
-40 5.22 2.05 2.23 -.0092
-30 5.02 1.97 2.30 -. 880
-20 4.74 2.00 2.34 -.066
-1u 4,41 2.16 2.37 -.054
0 4.06 2.38 2.37 -.958
10 3.78 2,56 2,35 - .085
20 3.75 2.51 2.30 1,084
30 3.86 2,27 2.24 + .0873
40 4.24 2.05 2.16 + .970
50 4.50 1. 96 2.08 L
60 4,73 2,03 2.01 + ,084
70 4,82 2.21 1.95 + .980
BO 5,08 2.40 1,92 + 994
80 5.20 2.53 1.92 + ,996

(a) Constants from V, P. Konstantinova, 1. M, Sil'Vestrova znd K. S.
Aleksandrov. Sov;(et Phys-Cryst. 4, 63 (1960).

(b) ©=8(q) in xyz =-a-bc coordinate system,

(c) L and Tl modes _polarized in (010) Plane.

(d) T2 polarized | b, .

(e) + sign indicates that U, is ahead oi q and vice versa for - sign.

L

.0819
.063
.044
.000
.063
.128
.109
.258
.300

.28
172
108
.231
.243
.213
178
141

.109
.089

i
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and @ the ang:e between Q and z (&).

We are aware that the present formalisin i3 not consistant with
atomic theories of elasticity and ¢hat the applicaticn of it to ferro-
electric crystals (polar crystal classes) as particularly questio ible.
This point is criticaily discussed by Hea:mon(w). No serious
discrepancies were found in comparisons of our velocity measure-
mernts for triglycine sulfate with calculated velocities using this
formalism. In this case of a monoclinic crystal a critical test is
not possible since the thirteen independent elastic constants of the

classical theory probably represent enough parameters tc fit any

set of experimental velocities.

We have so far been considering a simplified equation of state with

only strein and entropy as independent variables. Thermal diffusion of
heat being a very slow process over distances of the order of visible
light wavelengtha we expect the choice of adiabatic strain waves to be
an accurate description of the acoustic mcdes of crystals. We wiil
later consider the acoustic m- des in ferroelectric crystals. There
as in all piezoelectric class crystale we inust distinguish betwren
(adiabatic) fluctuations with electric field E held constant and
fluctuations with the electric polarization P (or displacement D)

constant.
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For those modes from which we can scatter light in crystals
we expect Brillouin scattering spectra to yield velocities which

accurately represent the limit

(2) —v(q) .
q q—0

That is to sey that with the available magnitudes of § in light scattering
we do not expect to see any curvature in the acoustic mode dispersion
relation. Thus the Brillouin scattering velocity measurements should
agree very closely with those from ultrasonic measurements,

The advantages of Brillouin scattering measurements cf
velocities compared to acouscic techniques are that they are now at
least as accurate as ultrasonic pulse techniques, they allow very easy
direction scans of the anisotropy of the velocities in crystais, and
they can be made in the presence of extreme damping of the modes,
The most important feature of the Brillouin scattering measurements
for the present work is that the larger q (compared to ultrasonics)
glve higher frequencies which allow fast relaxation processes to be
studied,

Brillouin scattering provides much less information ebout the

acoustic mode dispersion relation than the :cherent inelastic neutron
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3cattering experiments. Nevertheless because of the high spectral
resolution Brillouin scattering can show very simall changes in the
q—0 part of the dispersion relations, that is in the sound velocity,
due to externall; controlled changes of temperature, applied fields,
stresses, or the like, This is a great advantage in the study of

phase transitions.

Brillouin Scattering Cross Sections for Crystals

We turn now to an account of the photoelastic coupling for
Brillouin scattering in a crystal.(w) We describe the average
optical properties of our crystal by a syrametric second rank tensor.
(We agaume our crystal not to be optically active.) We chose an
orthogonal coordinate system which coincides with the principal axes

of this tensor. 1n this coordinate system the local dielectric tensor ig

= +
&(r, t)ij ci 6 Aeg(r, t)ij

i
In experiments we wish to have a single known scattering
vector q -- known in magnitude and direction, 1f we send the incident
light through the sample in an arbitrary direction with an arbitrary
polarization direction with respect to the pri.cipal axes then we wiil
iIn general get two incident beams each giving rise to two scattered
beams in the collection direction. Thig gives a total of up to four q.

Fach g can give up to three Brillouin doublets in a spectrum. The
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spectrum could show as many as twelve doublets.'(zo) Thus we will
usually want to choose somewhat specialized orientations of the
crystal in experiments,

The orientation which we used and will discuss here was that of
placing one of the principle axes of the average dielectric tensor
perperdicular to the scattering plane (the plane containing the
incident and scattered light wave vector directions). Call this the
z axis for the present discussion. In the notation of Section I with
directions parallel to z labeled V and perpendicular to z labeled H
we consider spectra obtained with incident and scattered light
polarization combinations VV, VH, HV, and HH. For each spectrum

there is a definite §,

q=ko-k8

where _1:0 and i:s directions are fixed externally and their magnitudes
are determined by the crystal refractive index for the corresponding
direction and polarization.

Consider first the crosa sections for the scattering of a V

polarized incident beam, The simplest is

4
Tvv {1\ (¥ 2. .2
. (G) ?°) <|Ac(q,t)33| >ve,

"
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We see that the scattering is due to a Fourier component of the

33 (zz) component of the dielectric fluctuation tenser. The VH cross
section is more complicated. We must project the source polariza-
tion, incuced in the dielectric fluctuation by the incident field, onto
the direction 68 of the electric field for plane electromagnetic waves
polarized in the scattering plane and traveling in the direction ﬁs' If
we denote the angle between the electric displacement in the scattered
wave and the electric field as & s and the refractive index for this

scattered wave as ns, then the cross gection is

4
dUVH (1)2<w0) nscos68

<|aea, ) ge,  + A, ) e,

. 23%g2
3

Similarly we find that the other cross sections

d“nv=(1)?‘(“’ )Z(J—‘?\ 2.2

0 \
| \ ncoss OlklA‘(q' V3180 + A(q, thyse o5V

do 2

HH =(L) 2
dQ \ 47

wo\ /D cosd \k
(—c)(n cosé lZ Aclq, )IJeO 601

i, j=1

yv?

with 8 and n defined for the incident wave polarized in the scattering
o) o
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plane as 6 s and n  were for the scattered wave. These last three

cross sections involve combinations of dielectric tensor fluctuation

components. In practice the situation is simplified because 6 s and § o

are approximately zero. By taking a scattering angle of 80° we can
then study (approximately} individual tensor component fluctuations:
VV scattering probes Ae VH probes Ac

HV probes Ae,,.,, and

33 31 32!

HH probes A‘l'2" where 1' is parallel to ko and 2' is parallel to ks.
To complete our description we must compute the coupling

between the acoustic mode strains and the changes in the dielectric

tensor and we must compute the mean square strain for each mode.
The standard treatment of the coupling is in terms of the

Pockels elasto-optical coefficients pij K1’ (21)

They relate strains
(second rank tensor) to changes in the dielectric impermeability

(second rank tensor) and so form a fourth rank tensor. Like the

elastic stiffness constants the Pockels coefficients have the symmetry

Pij, k1~ Pii, k1 T Pij, 1k

and can be reduced directly to matrix notation giving a 6 x 6 matrix.

In general Prn ¢ Prm 8° there are usually more independent Pockels

coefficients than elastic stiffness constants.

The Pockels coefficients are dimensionless and usually fall in

B

]
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the range 1to .01 , Prn withm,n = 1,2, or 3 is usuzily much larger
than pmm withm = 4, 5, or 6. This corresponds to the fact that
electrostriction is a stronger effect than shear strain induced bire-
fringence. These coefficients have not been measured for most

crystals. Most of the measured values are for cubic crystals.

Tables of measured P, c&n be found in Nye(zz)and Landolt-Bornstein. (23)

Crystal symmetry reduces the number of non-zero, independent
coefficients. For each crystal class the allowed coefficients and
relations between them are tabulated in references such as Nye.

For the monoclinic and cubic (m3m) classes the matrices look the same
as shown earlier for the elastic stiffness constants, the monoclinic
class matrix being nonsymmetric and the cubic matrix symmetric,

We want to compute atijlaxkl' In terms of Pockels coefficients

this is

8 " SmP

mn, kltnj )

If we take orthogonal coordinates coincident with the principal axes

of the dielectric tensor this derivative simplifies to

" 45P15, K1

A
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with £ the set of three principal values of the dielectric tensor. For
displacement wave

AT, 0 = el (AT - WY

the unsymmetrized strain is

i(@-T - wt)

X uqe

-4 A
|

Using these notations we calculate the appropriate dielectric
fluctuations due to this single acoustic mode which is assumed to be
a solution of the elastic wave problem discussed earlier. The basic

result is that the (real) amplitude of the dielectric fluctuations is
o a3 o N A
Aey(@) = - geilpyg gt d) au -
For example for VV scattering we want (IAcaalz). We find
2 2 A A 2 2
<’A€33| )= (Pgg gk <laul™>.

In this and the more complicated situations the result after projecting
squaring and taking the ensemble average is proportional to <|qu|2) .

This mean square Fourier strain comporent is eagily calculated from
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thermodynamic fluctuation theory('=4'once the secular equation for

the phase velocities is solved. We find for the jth mode

2 k
(’ QU! > o= —lﬂ_ = T 5
J Vp vj(a)

vC

where Cj 18 a root of the dynamical equation. This result may be
looked upon as an expression of the equipartition of energy or

(equivalently) a variance of a diagonalized 3 x 3 Gaussian
distribution.

Since the mean 8quare strain for each mode isg non-zero, the
basic selection rules for scattering from a particular mode in the
polarized spectra come from the symmetry requirements that

certain Pockels coefficients be zero or equal. The geometry of the

mode and light directions gives the detailed selection rules.

The selection rules are most useful for 90° scattering. The
basic features of selection rules for scattering from pure longjcudinal
and transverse modes are exhibited by cubic crystals and isctropic
solids. For these media the VV cross section is proportior.ai to
p122 and the scattering is from the longitudinal mode only -- (the
spectrum would show only a single doublet), the VH and HV cross
sections are equal and proportional to p442 and the scattering is
from the transverse mode with displacement vector perpendicular to
the scattering plane only, and finally the HH cross mection is

proportional to p442 and the scattering is from the longitudinal mode
only.
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In less symmetric crystals the polarized spectra do not

generally sort the modes so nicely. Nevertheless it is still quite
noie that the transverse mode polarized (more or less)

useful to
only in HV or VI spectra coupled through Py withi = 4,5, or 6.

perpendicular to the scattering plane will be expected to show up
It would be possible to see peaks due to this mode in VV spectra

coupled through P34 for exampgle but in practice such constants
wheil not forbidden are usually smaller than Pyq and the like.
When a doublet in addition to that due to the longitudinal mode shows

up in a VV spectrum and does not appear in the VH spectrum, we
can usually assume that it is due to the transverse mode polarized

in the scattering plane.
between strain and dielectric fluctuations for modes with g and the

As an example of selection rules we calculate the coupling
scattering slane parallel to the (010) plane of a monoclinic crystal.
The relevant Pockels

For VV scattering we want to know Aszz.
coefficients are Poyr Pyge and Pys- With notation for the direction
cosines: q = (f, 0, n) for the propagation direction, and u =(a,p,y)

for the displacement direction, we have

- .
Beyy ==ty [Pyy 0% Pyg 0 Y* Pyg (1y+ nal] qu.
We see tha* we couple only to modes polarized in the (010)
For pure longitudinal and transverse modes polarized in

plane.
this plane we find the separate couplings to be:
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2 2 2
L) = +
Aczz( ) :2 ( pmg + p23 n 2p25 £n) qu

2 2 2
Ae22(T) = -t [(pzs-p21 ) np + p25(l -n )J qu,

Thus we see that longitudinal modes couple in the usual way
through terms tg Poy and eg Py3 which are similar to the electrostriction
of isotropic materials. We gee that the transverse modes depend on

the difference in electrostrictive terms and the coefficient r Both of

25°
these contributione shouild be small

Without going as far we can learn that the modes which gave the
VV scattering above cannot give components in VH or HV spectra,
Fo. this coupling to exist we would need coefficients p4 and/or p
withm =1,3, or 5. These coefficients are rigorously zero so thele is

no coupling.

On the other hand the transverse waves polarized perpendicuiar
to the scattering plane, which were not coupled into VV 8cattering, do

give VH and HV scattering through the coefficients p44 and Pgg

We will return to the details of thesge calculations in Section 1V,
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SECTION IiI

THE APPARATUS USED TO OBSERVE BRILLOUIN
SCATTERING IN CRYSTZALS

In this section we will describe the I ght scattering apparatus
used to observe the Brillouin scattering spectra reported in this

thesis. It is essentially the same as that used by Chiao and Stoicheff, (25}

Our apparatus has been described in the literature in connection

2¢
with Brillouin scattering in liquids.( )

We first describe the layout of the apparatus. Then we will discuss
the components of the system with emphuasis on the Fabry-Perot inter-
ferometer. Next we describe the alignment of the system, Finally we

describe the raw data reductioi; from the spectral traces.

Layout of the System

The layout of the apparatus is shown in Figure 1I11. The
optical path is described as follows. Sixty mw of plane polarized, 6328 A
light from a Spectra Physics Model 125 He-Ne laser is focused by a
50 cm focal length lens into the sample. Light scattered at 90° to the
incident beam from a ghort length of the sample volume through which
the beam passes 18 collected by a 17 cm focal length lens and focused
at infinity, This light then passes through a variable stop ( the system
aperture stop ), which determines the collection solid angle and the
diameter of the Fabry-Perot etalon plates used, Next the selected

scattered light gces to the pressure scanned Fabry-Perot interfero:neter.

The normal to the plates of this interferometer ig aligned with the
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Fig. 111 °  Brillouin scattering apparatus. LF has a 50 cm FL.
Lens LC has a 17 cm FL. iens LI has a 36 cm FL.

Pinhole aperture A is 1,3 mm in diameter,
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ray from the selected scattering volume in the sample. The light from
this volume element which is in the pasa band of the Fabry -Perot is
transmitted. It is focused by a 38 cm f>cal length lens onto a pinhole
of 1. 3 mn diameter. Rehind the pinhol: :s a dry ice cooled EM1 9558
photomultiplier which detects the light coming through the pinhole.

The photocurrent from the photomultiplier can be processed
in one of two ways. For intense scatterers the photosignal across a
load resistor was recorded directly on a potentiometric recorder.
Alternately, for weak scatterers we use a photon counting system
which selects the pulses from the photomultiplier by height and gives
adc output proportional to the selected pulse rate which is record ed.

Running a spectrum is straightforward. With the apparatus
aligned and operating and with the box containing the Fabry-Perot
etalon evacuated, we allow a constant flow of nitrogen to enter the
evacuated box while recording the photosignal. A constant gas flow
rate gives a constant frequency scan rate of the Fabry-Perot pass bands
so that the time axis of the strip chart recording is directly pro-
portional to frequency.

The Fabry-Perot Interferometer

The hea:t of the spectrometer for Brillouin scattering is the
pressure scanned Fabry-Perot interferometer. It offers high transmission
with high resolution, smooth precise scanning of the pass bands, and
easy calibration.

In essence the interferometer consists of a Fabry-Perot etalon
mounted in a sealed box allowing the pressure (density) of the gas
surrounding the etalon and filling the cavity space between the etalon
plates tc be slowly changed at a controlled rate. The etalon consists

of a pair of flat, parallel, semi-reflecting mirrors which face each

w
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other at a fixed separation to form a cavity in which light can be
multipli-reflected.

The traditional theor; and practice of Fabry-Perot etalons
is well presented in Born and Wolf.( Modern application in
particular pressure scanned interferometers for use wit?“;;hoto-
electric recording of spectra are reviewed by Jacquinot.

We will not discuss Fabry-Perot interferometers in full
detail. We will simply give a quick review of the etalon character-
istics of scanned transmission fringes, maximum transmission,
finesse, and contrast. Then we will point out some design features
of our interferometer nd give the specific parameters of our
etalon.

The Fabry-Perot etalon has an mth order interference

transmission peak (pass band) when the condition
mi= 2nd cos 1

is eatisfied, where )\ is t he wavelength of the light, n is the re-
fractive ind ex of the medium in the cavity, d is the spacing between
the etalon plates, and i is the angle of incidence of the lignt on the
etalon, With monochromatic light incident this interfeience condition
yields a set of bri ght transmission fringes in the form of concentric
rings. For a given fringe labeled m the interference condition shows
that as nd is increased, cos i must decrease. Therefore the fringe

expands (i increases ).

In the pressure scanning system that we used d was constant
and h was varied linearly in time by changing the density of the gas in

the etalon cavity. Light incider+ on the etalon at i ¥ 0 was transmitted
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whenever m\ = 2nd and focused to pass through a pinhole before
being detected. Light at other angles formed ring fringes which
were blocked by the pinhole plate.

With this pinhole arrangement the etalon acts as a filter
for the light incident normal to the etalon plates. For a gas medium
between the plates [ (n-1) <<1]and A<< d the pass bands of this
filter are spaced Ao= (1/2d) cm'1 apart in frequency.
(1 cm-1 = 30 GHz.) This separation is called the free spectral
range., As the density of the gas changes the refractive index changes
in proportion causing the frequency of the pass bands to scan. The

simultaneous frequency changes of the pass bands is given by

6o
o

= -(1/\)é n

Therefore a linear refractive index change will give a linear freaquency
scan of the pass bands. For \ = 6328 R light and nitrogen gas having
(n - 1) = .0003 at one atmosphere pressure, we can scan the pass bands

over a frequency range of 4.7 cm-l/atm. A 3 mm etalon gives a free

1

spectral range of Ao =1.87 cm = 50 GHz so that we can scan through

2.8 orders with one atmosphere of nitregen.

As each pass band crosses the spectrum the intensity of the light
passing through the pinhole i8 proportional to the spectral intensity.
Detecting the light and recovrding the signal gives a series of spectral

traces spaced Ao apart. Ao is determined by measuring the etalon

spacer length. Thus the frequency scale on the trace of consecutive spectra

is known so that frequency shifts maybe deterniined by interpolation.
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The maximum transmission of the etalon is determined by the
losses at the cavity surfaces. For perfectly flat plates having
coatings with reflectivity R and transmission T the maximum
transmission is [ T/(1 - R) ]2. If there are no losses (scattering
or absorption in the mirror cbatings) then T =1 - R and the maximum
transmission is 1. In practice R is often greater than .95 so that
small amounts of absorption or scattering greatly reduce the maximum
transmission. Also, the lack of plate flatness causes different parts
of the cavity to tranamit at different times so that the peak transmission

of the whole working aperture of the plates appears reduced.

The finesse of the instrument is the ratio of the full width at
half maximum of a transmission peak to the free spectral range. For
perfectly aligned and perfectly flat plates it would be determined only
by the reflectivity R of the individual (identical) plates and giver by

Fp =aVR/(1 - R).
We see that for R close to one, FR is very large,

In practice the etalon fir :sse is limited by plate flatness, For
plates having rms deviations of \/m, the limiting finesse would be
about m/4. If the plates have a smooth deviation from perfect flatness
and/or parallel alignment then the effective finesse can be improved
by vsing a smaller diameter of the plates thereby limiting the maximum

difference in plate separation.

So far our discussion has indicated that trying to increase the

finesse of an etalon by increasing the plate reflectivity can be useless

A

o
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and even detrimental to overall performance through reduceud
transmission., With this in mind the present flatness limit for
available plates of X /200 would indicate that the plate reflectivity

should be kept <. 94 to approach a limiting finesse FF = 50,

This limitation on the plate reflectivity would be correct
were it not for the importance of the contrast of the etalon In

looking at Brillouin scattering from real (dirty) crystals.

If one is trying to detect a weak Brillouin component which
is next to a strong Rayleigh component then the instrumental contrast

{(discrimination) can be more important than the maxiin transmission.

The contrast is the ratio of the maximum to the minimum
transmiseion. If we take the transmission integra‘ed over a peak
between half maximum points and compare this to the transmission
integrated over the same band width centered at the minimum
transmission we find the effectivc contrast ratio. It is appraximately
the same as the contrast, 4(FR/1r)2, for an etalon with perfectly flat
plates, Thus we see that increasing the reflectivity R to increase the
finesse FR can strongly increase the effective contrast even when
the finesseis limited by the flatness finesse FF"

In our etalon we have used R = .98 (FR = 156) coatings on \/100
plates (FF = 25) giving a cont—ast of 104 in order to be able to suppress
the instrumental wings of strong Rayleigh components in the region of

the Brillouin components.

Successful exploitation of the choice of a high contrast etalon

requii 28 that the light detection system be very effective otherwise
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signal-to-noise limitations will make weak components impossible

to detect even with no Rayleigh wing present.

As an example of the usefulness of a high contrast etalon,
the first successful thermal Brillouin scattering in glass other
than fused quartz was done with our interferometer. (29) Previous
attempts by other investigators were unsuccessful due to the very

strong Rayleigh component in the light scattering spectra of glass.

Our interferometer was of special design. The tuning
adjustments (plate alignment) were made with a gear and feedthrough
arrangement which allowed tuning while the box surrounding the
etalon was evacuated. These adjustments remained independernt of
the pressure at all times. The vacuum box had rotation and height
adjustment screws. With the cavity tuned to give sharp fringes we
could precisely locate the center of the fringe pattern (viewed in a

telescope) on the intended scattering volume.

The pressure scan was linearized with a constant differential
flow controller made by Moore Products (Spring House, Pa., Model
63 BU-L). The high pressure side of this valve was kept at 2 atm
pressure by the nitrogen cylinder regulator valve. With this back
pressure the flow rate was constant within 1%/order for a 3 mm

etalon Spacer.

Perkin-Elmer fused quartz, 2 inch diameter, A/100 interfer-
ometer flats were used in the etalon. They were coated for
R = .08 at 6328 K We used 1.7 to 2.5 cm diameter areas of the
center of the plates. The overall working finesse shown by the

recorder traces was 25 to 35 with the 3.005 mm spacer. Peak

WA
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transmission for small areas of the plates was 10% as i asured
with a direct laser beam, but this includes the effect of the band
pass of a small area of the plates (F = FR) being less than the
laser linewidth (1 GHz).

The Photomultiplier

We used an EMI 9558 B (5-20) photomultiplier. The tube
was cooled to the temperature of dry ice by surrounding the tube
with a cylindrical metal chamber containing a dry ice-methanol
slurry. This chamber with the tube facing along the cylinder axis
was encased in plastic foam for insulation. The signal light coming
to the photomultiplier passed through an evacuated double window
which prevented condensation of water vapor on the tube face. The
voltage divider resistor chain was outside the cooling chamber. It
was covered by a sealed hox but was otherwise unpotted. Leakage
currents caused by cor.densation were never found to be a problem
because the resisiwors stayed cold enough to be frost covered rather

than wet.

The tube had a 112/“A/L cathode sensitivity, a gain of 106 at
1250 V and a room temperature dark current of approximately 4 nA
at this voltage. On cooling the dark dropped to less than 0.4 nA.
Later in the work the cathode dark current of the cooled tube was

measured with the counting equipment to be 85 +10 counta/sec.

Direct recording of weak photosignals (the voltage on a 1 meg
ohm load resistor developed by the photocurrent) was limited by

large spikes which occurred with our particular tube. The single

channel analyzer of the counting system to be described below took
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care of this nicely and allowed us to go to much longer integration

times,

For direct recording we used 1250 V on the tube and for

photon counting we used 1550 V.

Signal Processing

The . ta of Section V was taken by directly recording the
voltage dev. oped across al Meg ohm load resistance by the
photomultiplier anode current. Because of extraneous spikes in the
photomultiplier output this system was limited to integration times

of less than 1/2 sec. (set by the recorder).

Later work presented in Section IV was done with a photon
counting system. The signal is processed in the following sequence
of components. (1) An emitter follower matches the high impedance
of the photomultiplier to the pulse amplifier impedance. (2) A
Sturrup Model 101 linear pulge amplifier amplifies the pulses to a
convenient size for the analyzer. (3) A Sturrup Model 701 single
channel analyzer selects only those pulses which are of the height to
have been initiated from photoemission at the photomultiplier cathode.
The output of the analyzer was uniform pulses, one-for-one with the
selected input pulses. With the EMI 9558 photomultiplier that we
used the predominant noise consisted of large spikes which were much
larger than the pulses produced by photocathode events. These were
removed by the analyzer. The baseline was set low because there
was a distribution of cathode pulse heights. There wasg very little
noise consisting of short pulses. (4) A Sturrup Model 2201 count
ratemeter gives a dc signal proporiional to the average pulse rate

from the analyzer, The final signal filtering was chysen with

\Illlll'm"l
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1,5, or 10 sec time cnnstants. (5) The count ratemeter output is

recorded with a Honeywell Flectronik 19 recorder.

This system worked very well. It was limited to signale of
less than 100 k count/sec and required slow scanning rates in order
to prevent the ratemeter output from being distorted by the final
stage time constant. We used scan rates set so that it took 10 x

{time constant) seconds to cross the full width at half maximum of

the components in the spectrum.

In the work on TGS typical count rates were 3 x 103 counts/sec

at the maximum of a longitudinal mode Brillouin component.

The Fabry-Perot Aperture Stop

An iris diaphragm was placed between the collecting lens
(LC) and the Fabry-Perot. It had two important functions. First it
limited the diameter of the Fabry-Perot plates used. This was
important in achieving reasonably good finesse. Second it defined the
collection solid angle for the scattering. It was usually used with a
1.7 ¢cm diameter opening. With a 17 cm focal length lens this gave an

£/10 system.

The choice of collection solid angle has a special importance
in Brillouin scattering because of the angular dependence of the
frequency shifts. With an f/10 syatem the angular aperture is 0.1
radians 8o the range of frequencies collected at a scattering angle
of 90°is roughly (1/20) A-vgo.. Avgoowas < 18 GHz in TGS. Therelore
the broadening due to the collection solid angle is less than 0.9 GHz.
The linewidth data on TGS given in Section V was taken with a 1 cm
diameter aperture, In this case the broadening due to the collection

solid angle was less than 0.5 GHz,
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The Pinhole Aperture

The pinhole aperture (field stop) was mounted on a worm
gear, x-y adjustment microscope stage. This allowed very precise
centering of the pinhole on the image of the fringes formed by the
imaging lens (FI).

The choice of pinhole diameter is crucial to the actual
operation of the system, Clearly in order to trace out the central
fringe intensity profile as the Fabry-Perot is scanned the hole
diameter should be small compared to the diameter of the central
fringe. On the other hand, since the light intensity is low, signal-
to-noise considerations require that the pinhole diameter be as
large as possible.

We found the choice of an angular diameter of 3.6 x 10-3

radians to be a reasonable compromise for operation with a He-Ne

laser (1 GHz linewidth) and a 3 mm etalon (F £ 30).

The pinhole limits the length of the beam from which light is
detected. The 1,3 mm diameter pinhole selected a 0,6 mm length

( =L) of the laser beam in the sample.
The Gil Bath

The samples were placed in a 16 cm diameter cylindrical oil
bath, This bath provided index matching and temperature control,
The oil was light paraiffin oil which had been filtered through a 1
micron Millipore filter to remove dust. The temperature of the
stirred oil was regulated with a silicon control rectifier proportional
control using a thermistor sensor and driving a 100 W heating coil.
Further discussion of the temperature control and measurement can

be found in Section V.
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An additional mask was placed in the bath close to the sample
to keep extraneous light from being collected.

Polarzers

The incident beam polarization direction was controlied with
a Spectra-Physics Model 310 polarization rotator. The analyzing
polarizer in the scattered beam was a HN38 polaroid filter.

Initial Alignment Procedure

The initial alignment consisted of positioning the cylindrical
bath and setting the scattering angle. The angle et which IEO the
incident beam direction crossed the spectrometer axis (optical rail)
was set close to 90° by autocollimation with a 45° - 90° - 45° prism.
The angle was checked by running a Brillouin spectrum of water for
which the 90° scattering Brillouin shift is knowr,

Taen the bath was set on a flat bed optical ra!l rider. It was
centered so the the l'c\o and Qs directions were parallel to diameters of
the cylinder by autocollimation simultaneously with two laser beams.
One beam was the incident beam to be used in the experiment. The
gecond was a beam sent along the spectrometer axis. With the oil
bath positioned a water spectrum was taken to check the scattering

angle,

In the present work the initial angle was found to be 90.0° in the
oll bath, We had hoped to mon’tor the angle from time to time by
running water spectra and so keep track of the scattering angle. It
turned out that our water sample got dirty with time. The resulting

large extraneous central componcnt of the enectrum perturbed the

e i
4
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Brillouin component positions on the trace making accurate
measurement of the shift impossible, Nevertheless the TGS

measurements were consistent so that the angie remaind 6 = 90+ 1°.

The 6 = 135 scattering angle was set and checked in a similar
manner. The accu~acy of the angle was lower but because the shift
depends less on angle in the backward directions the uncertainty
in the velocities reduced from the data was not increased, This

angle was known to within + 20.

From the relation that the Brillouin shift is proportional to
sin (8/2) we can derive that the uncertainty in a velocity determined
from a Brillouin shift measurement due to an uncertainty in

scattering angle is given by

8 viv =cot(6/3) (606/2).

Therefore for 6 = 80£1° and for 0 =136+3°, 6v/v = £ 0.9% .

Running Alignment Procedure

At least daily during the Brillouin scattering data runs the
foli wing alignment was performed. With the sample out of the laser
beam and the beam crossing and scattering from the oil in the bath the
position of the image of the beam with respect to the Fabry-Perot
fringes was checked with a telescope placed between the Fabry-Perot
and the imaging lens. The Fabry-Perot leveling adjustment was
changed until the fringes were centered on the image of the scattering
from the oil, (The Brillouin components of the oil were visible in
the telescope during this adjustment.) Then the interferometer tuning
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was checked with laser light scattered from a paper card placed
between the collecting lens and the interferometer. With the

fringes sharp and brightly illuminated at all azimuthal angles, the
fringes formed by the imaging lens on the pinhole plate were
observed through a telescope and off axis lens. The fringes were
slowly scanned with the pressure scan and the pinhole was carefully
centered on the central fringe of the concentric circle fringe pattern.
This positioning was very important in achieving a narrow,

symmetrical, instrumental lineshape,

Checking the Fabry-Perot tuning and pinhole position could be
done at any t!me by illuminating the Fabry-Perot fringes with the
card scatterer. The sample position could be left untouched during
these checks. This was important when the tuning and pinhole
alignment had to be checked during a temperature run on a TGS

sample,

With the specirometer alignment complete the final step was to
select the volume element in the sample from which to collect
scattered light. This was done by placing the telescope after the
Fabry-Perot and noting the position of the center of the Fabry-Perot
fringe pattern on the telescope reticle. The telescope (with fixed
orientation with respect to the spectrometer axis) was then moved to
a position between the Fabry-Perot and the collecting lens. The
sample was placed in the laser beam. The beam traversing the
sample was examined through the telescope. The sainple was attached
by its mounting rod to a x-y adjustment microscope stage. This
allowed fi~e adjustment of the sample position along and across the

laser beam. The sample was searched until a "clean' (no inclusions or

J‘N\

all
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strains, et.) volume was found. This part of the crystal was then
moved to the position where its image feli on the reticle at the
position previously noted to correspond to the center of the fringe
pattern. In this way a clean portion of each sample was selected

as the scattering volume.

It was intercsting to note that during these visual examinations
the Brillcuin scattering from clean crystal samples was visible by

eye glving a uniform delineation of the laser beam traversing the

crystal.

Data Reduction

The Brillouin shift frequencies were measured from the
recorder charts in the following way. The center of the peaks was
determined by graphically dividing in half the width of the peaks near
the half pover level. The shift in orders (that is fraction of a free
spectral range A0’) was taken as the distance between the Stokes and
ant{-Stokes components (down-shifted and up-shifted components
respectively) of the mth order spectrum divided by the sum of the m-1
to m anti-Stokes component separation and the m to m+1 Stokes
component separation. Measuring in this way averages the compo: ent
displacements on the trace in such a way that errors due to a uniform

change of the scan rate are exactly cancelled. With the constant flow
regulator used the flow rate decreased only 1% /order with a 3 mm
etalon so that the averaging technique made the errors due to the

scan rate negligible compared to other measurcment uncertainties,
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SFCTION 1V

EXPERIMENTAL BRILLOUIN SCATTERING IN THE MONOCLINIC

CRYSTAL TGS

In this section we present the experimental observations of
Brillouin scatitering spectra for the moncclinic biaxial crystal
triglycine suliate (TC3). We will be concerned here with those
properties of the scattering spectra which are common to monoclinic
crystals and are not specifically related to the ferroelectric phase
transition which occurs in this crystal. Thus the purpose of this
part of the work ie to present evidence in support of the forml;lation
o? light scattering in crystals in Section II and to show how well
Brillouin scattering can be used to measure the elastic and photo-
elastic propoerties of a low symmetry crystal. The Brillouin
scattering cbservations concerned with the dynamics of the phase
transition in TGS will be given later in Section V. Those readers
who are mainly interested in the phase transition can omit this

section and proceed to Section V.

Outline

A series of measurements were made with the (010) plane as
the scattering plane. The spectra exhibit the frequencies of phonons
having ain the (010) plane. From these spectra through the use of
polarization selection rules we have been able to identify all three
acoustic modes and determine their velocities as a function of
direction in the (010) plane. These velocities are then compared with
velocities computed from elastic constants determined from ultrasonic

velocity measurements.
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From the variation of the intensity of the Brillouin ¢ .mponents
as the scattering direction is changed we obtained information about

Pockels coefficients (elasto-optic).

Spectra were taken for c-;‘ parallel to b bui these showed only

the component due to the longitudinal phonon.

Finally, the intensity of the scattering from the (quasi)
longitudinal mode for a particular- (? direction in the (010) plane was
compared with the scattered intensity due to the longitudinal modes
in fused quartz and water from which a reasonable estimate of the

absoiute scattering cross section was made.

Properties and Coordinates in TGS
(30)

Jona and Shirane have collected references to many
properties of TGS. From these references and later ones we have
collected a data summary of the measured properties of TGS which are
relevant to this work. They are collected in the Appendix along with

a coordinate system convention.

In this work the convenient set of axes Jor describing directions
was that of the reciprocal lattice. By convention the C2 axis of a
monoclinic crystal is taken as the b axis. The a and c axes are
perpendicular to ;, 80 that ;, and l;* and parallel. We follow Wood
and Holden G1) in the choice of a and ¢ and we approximate B =105°
for later comparison with altrasonic measurements. Our crystals had
large c faces which allowed us to determine the direction of ;: * in the
samples with respect to the incident direction {;o by autocollimation
of the incident laser beam. Our notation for directions in the (010)
plane will be to give the angle ¢ Letween the direction and the c* axis
with ¢ taken as positive when on the a* gide of c*. (See Fiyg. Alin the

Appendix)

g
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The optical parameters of TGS have been carefully meagured
Ly Dlon(u). As in all rronoclinic crystals the b axis is one of the
principle axes of the dielcctric ellipsoid. In TGS it is the acute
bisectrix having the lowest index of refraction n = 1.484. The two
principle axes lying in the (010) plane are roughly (within 3°)
parallel to the a* and c* directions and have the same index within
1%, nac = 1.57. Thus we make the convenient approximation: of
treating TGS as optically a uniaxial crystal. This greatly simplifies
the reduction of the observed frequency shifts to acoustic mode

velocities.

Paraffin oil was used as the medium for the oil bath surrounding
the crystal. The crystal is inert in this oil, the oil shows negligible
evaporation at the highest temperatures reached in this experiment
(SSOC) and it very nicely matches the index of refraction, . of the
crystal . The index match cut down the extraneous scattering at the
surface of the crystal and allowed light polarized parallel to b to pass

through the faces of the sample undeflected. This was very convenient

because the phonons of greatest interest give components in VV
scattering when the scattering plare is parallel to (010) and so involve

just those polaraziations of light which are index matched,

The slight mismatch in the oil index and n could give at most
1% changes in the Brillouin shifts. Worst cases occur at
¢(q) =0° and 20°,

Scattering Vectors

Table IV 1 gives the scattering vectors for (010) plane scattering
in TGS with 8 He-Ne laser. The expression there for 9yv is rigorously

true for all ¢(q). The expression for WH ig true in the approximation

" P o v g = > o
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TABLE 1V 1

SCATTERING VECTORS (010) PLANE IN TGS

8 4
POLARIZATION 27
. (1o4cm'13
90.0° vV 3.317
90.0° VH, HV 3.410
135.0° vV 4.335
Ty
qVV = Z‘NT 2 Sin 9/2

2 0
6% = =
qH\;@ ) 2n no + nb qu(go )
——
nb= 1.484
n =],67
o)

A

= 6.328 x 102 c

m
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of taking TGS as uniaxial about the b axis. With these scattering
vectors we can reduce 90° and 135° scattering angle Brillouin

frequency shifis to acoustic velocities since

Aw = vq rad. /sec.

L

with ¢ the velocity of light,

or

Av = v(i—) Hz

In this work we take ¢ = 3,000 x 1010 cm/sec,

The scattering angles as checked with scattering spectra of

water were (90*1)0 and (135 iZ)O.

The Experimental Spectra

Figure IV 1 shows a typical VV, (010) plane Brillouin scattering
spectrum of TGS for a scattering angle of 90° and ¢ (q) = -45%, Wwe
see that at this angle we couple to two acoustic modes. From the
selection rule given in Section II we know that A€22 is modulated only
by the modes polarized in the (010) plane. We expect the large, high
frequency peak to correspond to the (quasi-) longitudinal mode and the
other peak to correspond to a (quasi-) transverse mode.

The trace shown in Fig. IV 1 was made with direct recording of

the photosignal. It is typical of the spectra used to study the temperature
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Typical Brillouin scattering spectrum in TGS at
T = 34°C showing transverse (Av =10.22 em™!
and longitudinal (Av =t0.50 cm'l) Brillouin
components. inset shows orientation of scattering
vector q with respect to the reciprocal lattice

vectors in the (010) plane.

"
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dependence of the Brillouin shifts which i reported in Section V.
The final data taken for the velocity and intensity results to be
given in this section were obtained using a photon counting detection

system.

The calculation of the acoustic mode velocities and
polarizations from elastic constants in TGS as given in Section I
(Table T 1) shows that for each § in {010) plane there is a pure
shear mode with displacement vector perpendicular to the plane and
a pair of mixed modes polarized in the plane with the quasi-longitudinal
mode polarization direction within 18° of . From this calculation we
can predict the Brillouin shift for the quasi-transverse mode. The

shift approximately agrees with the observed shift,

If we change the scattering angle 8 but keep the q direction in
the cryntal fixed the cross section calculation for VV scattering shows
that the relative intensity of the components should remain the same.

From the expression for the Brillouin frequency shifts
Av = v 2kosin (8/2)

we know that increasing the gcattering angle snould increase the

frequency shift in proportion to 8in(6/2). These predictions are

verificd by the Vv scattering spectra shown in Fig. IV 2. ¢ (q) was

-45° for these spectra. The ratio of transverse to longitudinal component
peak beights is .23 for both spectra and the ratio of corresponding
Brillou'n shifts in the two spectra is 1.32 which agrees with the theoretical

ratio of 1.307 within the angular uncertainty in the experiment.

The spectra of Figs. IV 1 and iV 2 were taker at 34.40(2. The

temperature dependence of the spectra will be discussed in Section V.
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Fig. IV 2 Superimposed traces of Brillouin scattering spectra
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The third acoustic mode for the ¢ (q) direction which consists
of pure shear waves should only appear in VH and/or BV polarized
spectra according to the calculations at the end of Section II. Fig. 1v 3
shows a complete set of polarization spectra for (010) plane scattering
with ¢ (q) at -450. We see that for this g direction the pure shear mode
appears essentially only in HV scattering. The frequency shift of
this component agrees with the predicted shift from the velocity
calculation. Thus by taking polarized spectra we are able to very
nicely sort out the three acoustic modes for a particular § in agreement

with the cross section predictions.

It is interesting to contrast the results shown in Fig. IV 3 with

the spectra expected in an isotropic medium. There Krishnan's

reciprocity relation IVH = IHV should hold(”) and only the longitudinal

mode should give a component to the VV apectrum.

Acoustic Mode Velocities

We denote the acoustic modes for § in the (010) plane as follows:
L and T1 refer to the (mixed) quasi-longitudinal and quasi-transverse
modes respectively polarized in the plane and T2 refers to the pure
shear mode polarized perpendicular to the plane. In this notation we
have that L and TI gives components in VV spectra and T2 gives a
component in BV and/or VH spectra.

We took spectra at various § directions in the {010) plane in order
to explo-e the angular dependence of the intensity and frequency shifts.
This was easily done for VV scattering because the crystal was index
matched to the oil bath go that rotating the crystal was equivalent to

rotating the direction of g keeping its magnitude fixed.
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Fig. IV 3 Polarized Brillouin spectra in TGS, 6 = 90_ and
¢ (q) = -45°.
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The spectril data obtained from the direction scans has been
reduced to the plots of peak signal intensity, intensity ratio and

velocity for the L and Tl mod~s in Figs. IV 4.7,

The spectra were not actually VV spectra as they ehould have
been. Instead they made with vertically polarized incident light and
no analyzing polarizer in the scattered beam. Thus the intensities
represent the sum VV + VH = VT (T for Total). The spectra were
taken in this way under the naive impression from the spectra at
¢(q) = -45° that VH spectra had no components so that VT would be
equivalent to VV. This i8 not true so the transverse component
intensity and velocity data are somewhat distorted. This distortion
is most serious when the intensity of the Tl component gets small
and when the Tl and T2 modes are degenerate. The intensity of the
VV scattering from the Tl mode is quite low for ¢ (q) from -15° to
+5° and from 55° to 85° so the velocity curve for this mode isn't
completely measureable with our arrangement. In Fig. IV 7 we have
only given Vi V8- ¢ (q) for angles where the transverse compenent in

the gpectrum is believed to be due essentially to the Tl mode.

We will now compare the observed velocity pattern in the (010)
plane with the calculated velocities of Table 1I11. We have converted
the angles giving the a direction to 6(q), whexre 6(q) = 15o -¢{(q), to
correspond to the coordinates of the elastic constants., 6(q) gives the

sngle between G and the z axis.

In Fig. 1V 8 we have plotted the observed and calculated room
temperature velocities for the L. mode. The agreement is poor except
for the angles 6(q) = 0° and 80°. Figure IV 8 shows the observed and

calculated T1 mode velocities. Here the agreement is even worse but

i “!i«ﬂm




il

L T S

s MO s omrmrmonnc.

il

R

70

Fig. IV 4 L(quasi-longitudinal) and TI (quasi-transverse) mode
Brillouin component intensities versue q direction

from VT spectra. (Laser approximately 60 mW).
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Fig. IV 5 Ratio of Brillou'n component (peak) intensities for the
L and T1 modes from tl+ date of Fig. 1V 4. Points
labeled VV were checks to show that no VH scattering

from the T2 mode was present at the angles indicated,
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L mode (quasi-longitudinal) velocitiec in the (010)
plane of TGS. q direction is given by the ungle

¢ (q), measured from the c* axis. Uncertainty is
about * 1% in velocity and £1%in ¢ (4). For

reference a 2% ( £ 1%) error bar is shown.
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T1 mode (quasi-transverse) velocities in the (010)
plane of TGS. { direction is given by the angle
¢ (q), measured from the c* axis. Uncertainty is
about : 2% in velocity and = 1° in $(q). For refer-

ence a 4% (* 2%)error bar is shown.




R O i

T - " n T op: 3222
nas . posasse: frerd]
33t esse sl Frerts Frigeisy 3 n s dmas o 1 $ . T
HTHes e s ¥ 3 1952 sedgsances
+ . o 3
T ot
B Htes + o
T . {aas ohon e s
s 33 1 3
3 sese
3 T
e s haaees
3 o8 oa: $ 3
: v
e e
3 T wesee
~ - B els
4 ' -
o 2 + 3
bors ass
¥ 'a o " o
i & Hi N dass o 2
13 8 3
= ’. ssod
13 4 3 ' 4 1 1333
4 n 4 35 <3334t <
3t T s 3% + 1333 1!
31 1 s
: i : HHin
s +4- 4 B IS SRRSR eSS
8 39 $EeRs HERaRIIS L
T H BBesess:
+ T % 353 3 g
+ +E
!  Se ot ¥ 1 1
i + N T 3N bet 3
e Nyn. o 223t e - -]
saiadasdd 32,00 33 341 ] $ - 2
Efanalind ppat t 3 $ { § 53, 2
. * ]
Shangsadd 3 1 331! Eagt
- 'e 134 i1 ki o
Tosns el 233 5 H 3 #
H 1t 3
et P = . E 3
ot - Sons ot e e
+ % t 3
eas Vo I 3 11
3 i 3 b3 bephanasds
H 4 i 3 13 aaa s 1 i
Hid-3it 1331 3 3 ae s
- - - - = S <o
s 3 H ]
e < 13 u: 33 + e ety
i % 1 4 4 s nii
t ? + : -
4 3 133
T 3 2
8 3
b be 3. et
1
: 3 : 5 :
i * : :
]
- - 4+
331 H
1 3
hes) 13
_
Y 13
>e s, b : -
+ b T
+ T 3
s asa: + 1 3
tt +
% 2! 1 3 =
t
3 3 -
¥ 2 Ba0s a2t
T3
: T t Y ..
T 1 d
J33 + 1
e
: 3
ke ¥ 3 - s ad gtts
-~ e
35303 - . : e
t T us ¥ ¥ 1 233
tHedt : dags Biss. i ik t i : m
& H H bopes 3
4 + 1 beha
b i ' 34 % 333 ¥
3 3 2! o - ToR
’e + %
3 Lits
I 1 . s
oy japep o 3 13 H
s o : # e
. o s
' e hone T 23333
vod bauuh oy .o 3. .
a3 mm 23 1 28
3
e T : -+
:: pe: e
2 T 33 3 T
e BRald IIEIaNas U 1 H t
o - s epasa
T - . S+ IS
1 $ 1 3 11
sam 1923 4 * e 1 . o4 13
T = 3% 2
Fret3TTaT L 13 ¥ 31 3 18 sansq hoss
b TTL00 - 3 3 3 n 2
: # $3%
: s 5 $ i s e
T
1 ¥ 3
1 33
3 %
333
1
T = +
T 3
"o w o
1+t
a2eass ¥
IGDe+ nowna smenas T + + . 1t
= - e bo snune H 1




Lkl LU

A AT

SRttt e e aH I s

Ll

——

S S ST O st

QL T

78

Fig. IV 8 L mode velocities: observed and calculated.
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T1 mode velociiies: cbserved and calculated.
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we seem to get crossings of the curves at 6(q) = OO, 90°, and +45°

The differences in the observed and calculated velocities are weli

outside the uncertainties quoted for the elastic constants.,

The ultrasonic velocity measurements were made at 00, 90°
and one other angle (5:450?).

3

We find agreement at 0° and 90° ag
expected assuming that the light scattering and ultrasonic measure -

merits were done correctly. The disagreement at other angles

indicates that some of the off-diagonal elastic constants c
and/or ¢

13° 15°

35 were incorrectly measured or reported in the literature.

The L and T1 mode velocity data are tabulated in Table [V 2.
We found the velocity data to be completely repeatable from sample
to sample {five samples) and with different scattering angles within
the uncertainty in setting the angles and extremely repeatable for a
given sample when the temperature was cycled. There was no sign
of sample dependence of the velocities as was reported in the ultra-
sonic work.

Several more comparisons of calculation with experiraent to be

presented in this paper are based on the ultrasonic elastic constants.
We must here note that thege calculations are protably in error and
should be repeated with corrected elastic constants.

Figure IV 10 shows the calculated T2 mode velocities superimposed
on the few accurate T2 velocity observations from HV spectra. The

agreement at room temperature is fairly good (less than 4%
at most).

difference
These measurements were made with crystals having faces

cut normal to the incident and gcattering directions so that the index

migmatch between the oil in the bath and the index of the crystal for
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TABLE IV 2

(010) PLAN ' OBSERVED VELOCITIES®

e(q)(b) VELOCITY (105 cm/sec.)
T =49.2°C T=26°C
L T1 L T1
90 5.18
8o 5.08
70 4,99 5.02
60 4,88 2.39
50 4.80 2.29 4.80 2.20
40 4,70 2.16
30 4,57 2.06 4,52 1,95
20 4,33 2.14
10 4,26 2.27 4.13 2,22
0 4.11
- 10 4,12 3.97
- 20 4.26 2,53
- 30 4,52 2.40 4,51 2.26
40 4.747 2,19
- 50 4,94 2.10 5,03 2.02
-60 5.13
=70 5.21 5.26
-80 5.22
-90 5.18 5.17

(a) 6=90° 23 = 3.317 x 107 ¢m ™!

*
(b) 6=8(q) in xyz =-a~bc coordinate system, ~0(q) = 15%+ ¢(q)

T
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TABLE IV 2 (Continued)

(010) PT.ANE OBSERVED VELOCITIES (P
T=49.3%
8(q) VELOCITY (lOscm/sec. )
1 L -
97.5 5.21
§ 82.5 5.10
§ 87.5 5.00 2.51
i 30.0 4,57 2,08
E 7.5 4.24 2,32
i - 12,5 4,14 2,57
H
i - 32.5 4.60 2.32
- 52.5 4.05 2.12
- 67.5 5.21
- 82.5 5.24
(b) ©=135°
q

3 . 4.335x0%m™!
27 :

E
£
-
S
:
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Fig. IV 10 T2 mode (pure shear) velocities: obgserved and calculated.
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light polarized in the(010) plane could not cause the beams io be

deflected. To get data points with 6(q) near 00° required cutting
fuces at 45o to the c face. Autocollimation off the c face became
difficult so the direction of g in the crystal is less certain ‘n this

data than in the VV scattering.

Spectra were taken for g parallel to b with a scattering arigle
0 135°. These spectra showed only a longitudinal component .
This mode is a pure longitudinal mode. The observed Brillouin
shift indicates that the velocity is 4.38 x 10"5 cm/sec. at 49. 2¥C
and from the measured temperature coefficient of -1.7 x 102 cm/sec’C
we calculate an extrapolated velocity at 23°C of 4.43 x 105 cm/sec.
Due to the refractive index mismatch for this crystal orientation we
expect the scattering angle inside the crystal to be increased causing
a 1% increase in q. This correction *vas applied to the above velocities.
Again we are within 2% of the velocity calculated from the ultrasonic
elastic constants (4.36 x 105 cm/gec. at 230(_.“) but froin the uncertainties

given with the ultrasonic data we should be even closer.

Pockels Coefi.cients

The spectra giving the intensity data for Figs. IV4 and IV 5
were taken with the crystal at 40.2°C. Spectra teken at room temperature

give essentially the same ratios.

In order to reduce the intensity data to relations among the
Pockels coefficiente one should reduce the velocity data to a set of
elastic constants, then compute the phonon polarizations (eigenvector
problem) and finally compute the strain (qu)p . This i8 a second rank
tensor or in matrix notation with reduced subscripts a six component

vector.




dbtiiuiniti

- ST ——————ne T

K

e

8b

It was hoped that the observed velocities would agree well
enough with the velocities computed from the uitrasonic elastic
constants that one could use the phonon polarization vectors from
that calculation to compute the strains produced by the mixed modes.
As we have already seen there is substantial disagreement in the
velocities so that to use the calculated phonon polarizations to derive

consistent Pockels coefficients i8 questionable,

We will carry the intensity calculation a little further to
make some semi-quantitative statements. We showed in Section II
that Ac22 which describes VV scattering for the (010) plane is given
by

2
T - +
Ae c2 ( p21 I~ +p

g n¥ + Poe (1¥ + nx) ) qu

23

where gq ={ ), 0, n)andu =(a,B,¥y)
This result is found by computing the strain
(qu), = [fa, 0, ny, na,fy+na, 18 | qu

(in matrix notation) and multiplying it into the photoeiastic matrix

B¢, .
1] = -
LW (‘i"j Piik1 )
po
oo

Py, Pyg and P, are the only allowed coefficients in the present case.
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We will discuss our Brillouin component intensity observations
b3
in the orthogonal coordinate system x'yz' = abc but will omit the
primes on the subscripts.

The scattering intensity from the quasi-longitudinal mode
does not depend strongly on the mixed character of the mode so we

have attempted to fit the intensity data for this with the expression for

a pure longitudinal mode

2 2 2
A;zz- -¢, (p21 17 + p23 n + 2p25 nf )qu

Then we expect the ratio of scattering intensity for q at 0° and 90° to be

2 2
1 L(O) _ /p21 ) VL (90) .
SR k"23 YL 0

Performing this calculation on our data gives the result

o 2
(—%l) =1.1£10% .
P23

Since the L intensity shows no zeroes or strong minima we expect

Py and Py to have the same sign and so we find that Pyy and p,, are
approximately equal. The mixed character of the L mode makes only
a 4% effect on the ratio of the p's according to the calculation of
Comparing the velocities in Fig. IV 6 to the L intensities

Table I 1.
in Fig. IV 4 ghows that the intensity is approximately proportional to

=
E
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v-z for all q in the plane. From this we conclude that Pyg<<Py3-

If Pip - Pyj then we can write

2 -
Aszz(Tl) = -t (pzsq.u,.

: rq ¥ Pog cO8 26(q))qu .

Thus near ¢(q) = 145", where the second term is very small, the

scattering is proportional to (3.u This quantity is a measure

2
Tl) .
of the mixed character of the T1 mode. It would be zero for a pure
transverse mode,

u
T1
data of Fig. IV 4 shows poor agreement but since the calculated

Comparing the E column of Table II 1 with the T1 intensity

velocities do not agree with observation this is not surprising.

We expect that the lowest values of the T1 mode velocity
corresp d to the g directicns having the greatest mode mixing. We
see that these directions also correspond to maximum T1 intensity in

agreement with the pradiction that Ae 2 is proportional to

Q-up )

22

This parti cular comparison to the intensity data is not hindered
by the VH scattering in the VT data of Figs. IV 4 and IV 5 as shown
by the circled points of Fig. IV 5 which represent intensity ratios

taken from VV spectra.

A systematic study of the HV scattering intensity in the (010)
plane was not made but we can say something about the Pockels

ccefficients. The expression for the dielectric fluctuation probed in
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HV or VH scattering is much more complicated than that for VV

scattering. This is because for a general q direction the scattering
amplitude comes from a linear combination of A¢_ and At"B'
Y

For q = (1,0, ) we have

x =]0,0,0,n,0,1]qu

To treat the case of a 900

\ 1 =
E_ = F2_[01+n), o, (n-))] E =(0,10)

f or VH scattering and
1
E =(0,,0 E = J_;_[(1_;1), 0, (r4+f)]

for HV scattering, In this case the dielectric fluctuation amplitude

is
totb
Hv 2

2

[ A 4

ob 2 -
" - 7z [“’44*”64) 0+ (Peetp e)d
+9"64”’46’ * Pgg * p44}"ﬁq“

with + sign for VH and - sign for HV, Table 1V 3 glves Ac¢ for HV

and VH for special directions.

e i

g
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TABLE IV 3

HV, VH SCATTERING AMPLITUDES

) POLARIZATION “Ae
0 VH t:o cb (p
- +
90° VH 515 0. Tp.)au
HV N 66 46
Q € €
+45 HV ob
— (pgg™ Pgy) T
2
E E
+45° HV ob (p44 - p46)qu
N 2
o € €
- Vv b
45 H 0 (p44 +p45) o
N2
o] ob
-45 HV - (p66 - pM)qu

oy
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We found the ratio of the HV intensity at ¢(g) = -45° to ti.c
VH intensity at ¢(q) = +45° to be . 76 which is just equal to the inverse
of the ratio of squared velocities at those angles. Therefore we
conclude that Peg is much greater than Pgy We found VH to be 3.3
stronger than HV at ¢(q) = +45° while there was no detectable VH
scattering at ¢{q) = -450. From this we conclude that p44 = -p46
and (2;)44)/p66 = ,56 ,

Finally, from the ratio of an HV component to the VV
longitudinal component at ¢(q) = -45° we have
Pge
Paa

=.28 L]

The scattering inteneity from the longitudinal mode with g
parallel to b was found to be the same as that for 6(q) = -45°

scattering from the L. mode (within 3%) both for yz and for xy

plane scattering spectra, Therefore Pys = P3g and
p
121 - 6.
P23

In order to determine the Brillouin scattering cross sections
and Pockels coefficients in TGS we ran consecutive VV spectra on
samples of water, fused quartz, and TGS (¢ (q) at -450). By
comparing the signal heights of the longitudinal components in
these materials we can determine the cross section in TGS
because the cross sections in water and fused quarts are known
in the sense that they can be calculated. The cross section per

unit volume (denoted s) is
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A 2 (_1__)"'kT (e-1)2
—do n -
for HZO and
ds % ("p )2
v _ 2(_1) T 12
as LA Ry V.2
YL

for fused quartz. These cross sections give the total scattering
intensity for scattering from the longitudinal modes in the doublet

with components at Aw = £w(q). The cross section for a single

Brillouin component would be half as large.

The data is given in Table IV 4 as the maximum signal for
the longitudinal components, the signal atios, and signal ratios
corrected for differing collection angles. From these ratios we
computed the scattering cross sections from the calculated cross

section for water at 230 Cand \ = 6828 X

dBVV

dQ

= .683x10"8 cm'1 (i. e. cmzlcc)

They also are listed in Table IV 4.

For comparison we can calculate the cross section for fused quartz
35
directly from measured values of Piq Vedan{ )gives Pjo = 285 and Primak

and Post(“)give .270. Taking thcse values to represent the uncertainty
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TABLE IV 4

BRILLOUIN SCATTERING CROSS SECTIONS

(a) ds

Peak Ratic vV
Signal to dn
Se 1 -
ample (k count/sec, ) H, O (em™)
-8
H20 32 1.00 . 883 x10
Fused -3 _8
Quartz 1.86 7.5x10 5.3 x10
|
o -2 -8
TGS 3.3 13,0x10 8.2x10

aCoz‘rected by ratio of squared refractive indices to account for

different collection solid augles.

dsw is the differential cross section per unit volume for VV
dQ

-1

2
scattering. The units are cm /cc = cm
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in our knowledge of Py Ve take a value of Pyy = - 278 £ 3%. Then
for the same temperature arnd wavelength we find

for fused quartz

dsvv

an

= (56,0 % 3%) x 10'B cm-1

This is in reasonable agreement with the cross section for guartz

calculuted from the observed intensity ratios.

Given the densities, longitudinal velocities, and refractive
indices nf fused quartz and TGS we can extract the ratio Py3 of TGS
to Py of fused quartz. The cross section formulas and the relations

among Pockels cuefficients found in TGS show that the intensity ratio
satisfies

Tras (e b2 pza)z'rc;s (" VLZ)FQ
2 p
1

'FQ (¢ 2)2FQ G VLZ)TGS

2 1
Taking for fused quartz pv™ = ,78 x 10 2 dyne/cm2 and n = 1.458

and for TGS 2v° = . 357 x 1012 dyne/cm2 and n = 1,484 we find

P23 (TGS)/ Pm (FQ) = . 95.

Taking plz(FQ) = . 278 gives p,, (TGS) = .26(4) . We can now

evaluate the remaining Pockels coefficients that were involved in the
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experiments. They are collected in matrix form in Table IV 5
with their most probable signs. In most cases the signs are not

determined by the intensity comparisons.

Finally, with this data we can give two numerical examples
which justify the comment made at the end of Section I whi.:i said
in effect that

2 ~

€ Py = €e-1

This is a very useful .relation for predicting approximate scattering

intensities.

For fused quartz we find e -1 =1.27 and c2p12 =1.26+ 3%.

~ 2
For TGS (010) plane scattering we find & - 1=120= ¢

One further observation about TGS as a light scattering sample
should be mentioned. In 6328 £ light the crystal produces a strong
background of inelastically "scattered" light. This background can
be blocked with an 18 X width interference filter, hence must come
from >+ 22 crn-1 away from the center frequency. It co:ld be a
strong Raman effect or more likely it is fluorescence. When a TGS
crystal was placed in an Argon laser beam (4880 R ) we saw a light

path in the crystal illuminated by depolarized weak yellow fluorescence.

Sample Preparation

The TGS samples used in this work were grown from solution
by aslowly lowering the well regulated temperature of thr solution at

a constant rate. The apparatus and technique were essentially ilie same

el
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TABLE IV 5

TGS POCKELS COEFFICIENTS(®!

& 160 ® . ) . ]
27, e 27. . 0. .
o 1l6. Y . ® .

= . 'y . 2.1 Y "2.1

@ Allowed but not measured

« Zero by symmetry

(a) x'y'z' = abe”  conrdinate system.

x 1072
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(7)

as those used at the National Bureau of Standards in growing
ammonium dihvdrogen phosphate crystals. The raw TGS was
produced by Eastman Organic Chemicals. We dissolved this in
distilled water to form a saturated solution at 44°C. This solution
was then passed through a 1.0 micron pore diameter Millipore

filter up to three times. In this way we obtained a dust free soluticn
which produced crystals substantiully free fromi inclusions, as shown
by direct visual examination using laser illumination and by the low

extraneous elactic scattering in the light scattering spectra.
Reference (38) gives two articles on growing TGS .

The samples of TGS used for light scattering were prepared
from large ( 2 x 2 x 4 cm) crystals by cleaving the crystals
perpendicular to b making roughly 6 mm thick (010) cut plates. The
large natural c faces were left intact to serve as orientation refer-

ences.

Electrodes were painted on the (010) faces to aliow the application
of large dc electric fields parallel to the b axis. For the work in
this section the application of fields was only to assure that the crystal
wasg single domain in the ferroelectric phase. This will be discussed

more fully in Section V.

The sample was mounted on lucite support rod. This rod held
the sample suspended in the oil bath used to control the sample
temperature and provide the refractive index match. The rod was
mounted vertically in a device (a "twiddler') which allowed screw
adjusted measured rotation of the rod and sample about the rod axis

which was verticle and perpendicular to the scattering piane,
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SECTION V

LIGHT SCATTERING IN TGS NEAR ITS FERROELECTRIC PHASE

TRANSITION

Trie goal in our light scattering experiments in TGS was to
study the dynamics of thermodynamic fluctuations in the region of a

second order phase transition in a crystal.

After a short description of the relevant properties of TGS we
will present the results of Brillouin scattering #xperiments in TGS
near the Curie temperature. These experimerts basically consisted
of measuring the Brillouin shift and linewidth &8 a function of
temperature and applied field for the various acouatic modes. We
found that certain of tiic modes showed a q dependent velocity dispersion
with temperature and field. The data was found to fit single relaxation
time predictions of velocity dispersion. The related damping of the
modes was seen as a broadening of the Brillouin components in the
dispersion region. We were able to extract the temperature and field

dependent relaxation rates from the data,

We believe that the observed relaxational effects are due to the

large and slow fluctuations near T _ of the electric polarization parallel

to the ferroelectric axis. The datg is presented in this section without
such an interpretation in order to separate the experimental facts from
theory. In Section VI we will give the phenomenological theory which
ties together the observations of the present section and the ferro-
electric phase transition. The reader unfamiliar with ferroelectrics

and second order phase transitions may wish to go directly to Section VI

before studying the experimental results.
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No critical opalescence was observed though it was searched
for indicating that the fluctuations in the order parameter near TC
are not strongly coupled to the optical dielectric constant,

Triglycine Sulfate

Triglycine sulfate (TGS) is a colorless monoclinic crystalline

golid. The molecular formula is (NH‘,,CHZCOOH)SHZSO4 and there

are two formula units per unit cell. This crystal was found to be
ferroelectric at room temperature and undergo a phase change to a
non-polar phase at 470C by Matthias et. al, (9) X-ray studies by

Wood and Holden o) showed that the polar phase had the point symmetry

4\
C,. Further x-ray studies by Hoshino et. al. (4) showed that non-polar

2
phase ha? an average symmetry Czlm. In the polar phase the

monoclinic (b) axis is the ferroelectric axis as is required by symmetry.

The phase transition in TGS is marked by Curie law behavior
of the dielectric consta\nt, that is o is found to be proportional to
| T-TC! = e TC_(M’ The phese transition temperature and the
Curie temperature are taken to be the same close to the transition.

We describe a ferroelectric crystai for the present as a polar
class crystal exhibiting a pyroelectric polarization (i.e. a temperature
dependent electric polarization occuring spontaneously without an
external electric field) which can be reversed by an applied electric
field. In analogy to a ferromagnet, a ferioelectric crystal shows
P vs. E hysteresis loops for electric fields applied along the direction

of spontaneous polarization. G;is the electric polarization).
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(47)

The crystal TGS microscopically has a very complex structure
and macroscopically it has low symmetry. Nevertheless TGS is a
reasonable choice for a first Brillouin scattering study because its
macroscopic thermodynamic properties show simple behavior, many
of its properties have been measured, it has a well established
second order (order-digorder) phase transition at an experimentally
very convenient temperature, and it i8 easily grown in large optical

quality crystals.

Previous investigations have shown that there are elastic

4 g
anomalies near TC in TGS. Gilletta( 4) and Ikeda, et al, (45)

studied the elastic compli ances sij by resonance techniques and found

MR R A DR IO Nt resaomsamotostscss

certain of them to show large changes just below TC. The work of
Ikeda, et al. established that there was no change in the elastic

properties at constant electric polarization (P) at the phase

transition, but that electrostrictive coupling of polarization and
elastic vibrations gave an anomoly in elastic properties when
measured with constant electric field (E) boundary conditions.

3 . (46
O'Brian and Litovitz

) found velocity dispersion and frequency
dependent attenuation below TC for pulsed ultrasonic waves ’raveling
perpendicular to the ferroelectric axis. They fit their observations
to single relaxation time formulae and attributed the relaxation to the
polarization along the ferroelectric axis. Based cn these studies we
expected to see the Brillouin components for scattering from suitable
| modes show a 1% to 10% frequency increase as T approached T

C
frcm below,

TATICHETR N iy
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Temperature Measurement and Control

The temperature of the crystal was controlled by regulating
the temperature of the oil bath in which it was placed. The bath was
cylindrical, 16 cm in diameter and 15 cin high. The oil was light
paraffin oil which had been filtered through a lx Millipore filter. The
temperature controller was a commercial proportional controller
(Fisher Scientific Propcrtional Temperature Controller Cat. No.
150177 -50V2) using a thermistor probe, an ac bridge and phase
sengitive triggering of silicon control rectifiers. The heater was
a 100 W copper enclosed coil. With a well stirred bath and careful
probe placement it was possible to contrcl the temperature to within
+.01 C° The temperature was measured with a Prooklyn mercury
thermometer (#22236) with a (. 01 Co)/div. scale for temperatures in
the range 41°C to 55°C around TC' This thermometer was calibrated
for total immersion bui was not used totally immersed so the absolute
temperatures are not known to better than %. 03 c®. On the other
hand temperature differences should be good to within the limit set
by the control f)ctuation of £, 02 c®.

Determining IC
The review literature gives only the crude value of 49°C for the

Curie temperature of TGS. A literature search shows that TC has

been found to occur over a range of 47°C to 50°C by different

investigators studying different samples. Even the recent highly

(47) (48)

precise dielectric measurements of Craig and Gonzalo give

T, differing by 1 c®.

We wanted to eliminate the necessity of knowing our absolute
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temperature while accurately knowing how far we were from ’1‘(,.

This made it necessary to perform an independent experiment to

find the temperature reading of our thermometer which corresponded

to TC in our samples.

Qur test for TC

at which an immersed TGS sample stopped showing hysteresis in its

was to look for the temperature of the oil bath

P vs. E characteristic. Since Ps' the spontaneous pclarization,
goes continuously to zero as T approaches TC from below and then
remains constant at zero for T greater than TC‘ the temperature
at which the hysteresis loop first closes should be TC'

The probes for this test were small capacitors made from the
same batches of TGS to be used in the light scatfering experiments.
These capacitors were 1 mm thick cleaved b plates with b faces of
about . 5 cm2 area. The b faces were painted with silver conducting
paint to form the capacitor electrodes.

These capacitor probes were submerged in the oil bath and

(49)

connected into a simple version of a Sawyer-Tower circuit
which allowed a 60 Hz ac voltage of 45 V rms to be applied to the
crystal electrodes (E up to 640 V/cm) while a signal proportional
to the charge on the electrodes was displayed vs. the applied field
on an oscilloscope. No special phase compensa‘lon was used so
it was not possible to get the display on the oscilloscope to show a
closed loop at T greater than TC but by turning up the gain of the
scope it was possible to magnify the temperature dependence of
the tip of the loop. (The tip is the point of maximum induced
polarization and applied field,) It was found that for thermometer
readings greater than 48.25 + . 01°C the tip of the loop was independent

of temperature, We found this same temperature for samples given
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to us by T. A. Litovitz, for samples grown in our laboratory from
pure baths and for a sample grown in our laboratory from an iron
contaminated bath.

We defined this temperature reading as our reference TGS
Curie temperature. All temperature differences to be given later
in presenting the data were computed using this reference temperature
reading of 49. 25°C.

The absolute temperature of our T . measurement was 49. 23 £ ., 03°C

C
taking the -, 07 C® zero correction supplied with the thermometer and

an estimated stem correction of +, 05 C° into account.

Table V 1 gives a list of Curie temperatures observed by other
workers along with the present determination. The most illuminating
discussion of the variation of Curie temperatures due to holding the

crystal at T greater than T _,, applied electric fields and doping is

C
found in Stankowska and Stankowski, (s0) They found TC to be 49, 2°C

for multidomain pure crystals, 40. 15°C for single domain pure

crystals and depressed to 48, 2°C for CuSO doped crystals, Our

4
temperature is in agreement with their results since the ac fields

required to see the hysteresis loop cause the formation of antiparallel

s1)

needle domains. It appears that crystal purity, defects, and

mechanical and electrical clamping effects have caused different
Curie temperatures in the various investigations,

2
Temperature Dependence of the Brillouin Shifts(" )

Biillouin spectra were taken with the scattering plane parallel
to the crystal (010) plane for q at -45% to c* (i. e. , $(q) = -45° = 0(q)
= +30°. See Appendix Fig. A 1.) at temperatures between room

temperature and 55°C. A temperature dependent frequency dispersion
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TGS CURIE

(°C)

47
48

49.8

49.2 - 48.3
49.15- 49.2
49.2

49.1 - 49.6
48.3

49.09
48.478
49,42 +,05
49.23+.03
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TABLE V1

TEMPERATURES

Reference

o - - D = PR o T o

(o

s
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a (39)
Matthias et al, (1956)
b (83)
Hoshiro, Miitsul, Jona and Pepinsky (1957)
o (84)
Triebwasser (1958)
d . (85)
Konsantinova, Sil'vestrova and Aleksandrov (1960)
. 50
® Stankowska and Stankowski seo) 0
£ (886)
Shuvalov and Pluzhnikov (1982)
g (87)
" Sil'vestrova (1962)
h (88)
Hill and I<hiki (1963)
: (46)
O'Brian and Litovitz (1964)
j (47)
Craig (1866)

I (48)
Gonzales (19686)

1 The present work

"‘"‘""'"Nulmmem.

4l
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for the quasi-londitudinal (L) and quasi-transverse (T'1) modes was

found to occur for temperatures in the range 46°Cto T This

dispersion is shown for 3rillouin scattering shifts fromcspectra
taken at scattering angles of 90° and 135° in Fig. V 1.

In order to interpret these data we must know the temperature
dependence of the scattering vector magnitude q which can depend on
T through the refractive index. We measured the refractive indices
of TGS, n.b and an index in the (010) plane, with a Bausch and Lomb
Abbe' refractometer at temperatures between room temperature and
55°C. We found the indices to be constant within 100 ppm from 34°C
to 50°C. We can then conclude that to within our precision of
frequency measurement the scattering occurs at constant q as the
temperature is varied.

To assure that the direction of g couldn't change as T was
varied the extra precaution was taken of cutting faces on the sample
normal to the incident and scattered light directions, 120 and l’(\ g

With '5 constant we can interpret the changes in the frequencies
as changes in the acoustic mode velucities. Thus we see that the L
and T1 modes show a rapid increase in velocity as T approaches TC
irom below, superimposed on a gradual decrease.

The total velocity increase indicated by the data in Fig, V 1
is 1% for the L. mode and 9% for the T1 mode with the 900 and 1350
scattering angle data s! owing the same total velocity dispersion.
For a given mode the curves for the two sceattering angles do not
glve the same v(T), Instead the scattering with larger q (6 = 135%)
shows the frequency starting to increase further from T , than that

C
for the smaller q (8 = 900).
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Fig. V1 L and T! mode Brillouin shifi dispersion with

temperature. ¢ = 00° and 135°. é(q) = -45°.
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In Fig. V 2 we have plotted the difference from 'I‘C of the

temperature at which the frequency (velocity) was half way through

the dispersion versus the frequency at that point. These points lie

0, -1

on a line given by w = 3.4 x 1010(sec. C7) " (T, - T), with the

C
phonon frequency in radians/sec.

These results are ronsistant with a single relaxation time
velocity dispersion of the form

2
v2=w—2=vi-(Vi-V<2))/[1+(w‘r)2]

q
with the relaxation rate 'r-l proportional {o the temperature dif-
ference (TC - T) and w the temperature dependent phonon frequency

for fixed q. v(z) is the low frequency velocity limit and vi the high
frequency limit. 3Since (v:) - vg) << vj it is a reasonable approximation
to take the half way point of the velocity dispersion as representing
the half way point of the w2 dispersion where wr =1, We then expect
the half way point in tte velocity (Av) dispersion to occur at a (TC - T)
proportional to the frequency at the half way point. Fig. V 2 supports
this view 8o we extract the relaxation rate v 1. (3.4 + 10%) x IOIO(TC-T)
sec. -1 with AT in C°. The data for Fig. V 2 are given in Table V 2.

We have been able to fit the observed velocity dispersion v(T) for
each of the four cases studied to the single relaxation formula over
most of the dispersion. This was done by reducing the shifts Av for

each mod~ and scattering angle to the quantity
_ 2 2 %
D= [(Avoo) - (av)?] / (Avm)

with Av_the limiting shift at {2 T Taking wr = B/{A™) and a

c’
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Fig. V2 AT versus the mode {frequency.
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TABLE V2

RELAXATION TIMES IN TGS

T -T wl/em . W
(CO) (GHz) (10" rad. / sec,)
1.2+£,3 6.64 41.7
1.6+ .3 8.70 54.6
2,71%.5 15.20 95.4
3.2¢5 10.80 124.3

1

(10 " gec. )

2.4
1.8
1.0

i
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normalization D = [ (Av )2 - (Av )2]/(Av )2 we fit D/D_ to the function
o 0 o © 0

1-1/(1+ (m-)z) = wr /(1 + (w—r)z) with B and D_ as adjustable
parameters. This function comes from the v2 single relaxation
dispersion formula by calculating (v2 - vi)/(vi - v(z)). The T1 data
is more complicated because of the background temperature dependence.
For this data we subtracted a linear (with temperature) decrease in
D/ D0 of 2.5%/C°. Fig. V 3 shows the normalized data and curves
plotted against log AT. (The 6 = 96°, L mode data which showed the
largest scatter is omitted for clarity.) Table V 3 gives the parameters
of the curve fitting. The parameters are consistant with the veiue of 1
determined from the raw Av versus T data,

As confirming evidence for the interpretation of the dispersion
as due to a single relaxation time mechanism we have studied the
linewidth of th'e 90° scattering Brillcuin components in the region of
the dispersion\.ﬁ)The raw linewidths of the components in the spectra,
made up of the convolution of the lagser, phonon, collection, and
instrumental linewidths, are shown in Fig. V 4 for the T1 mode at
$(q) = -45° and the L mode at ${q) = -16°. We see that the L and T1
modes go throvgh a maximum approximately at the AT of the disper-
sion half way pcint (equivalent to wr = 1) and drop to a low value (in
fact the instrumental value) as T reaches TC' Figure V 5 showe
superimposed experimental traces ¢f the minimum and maximum
linewidths for the T1 component.

The frequency dependent velocity dispersion implies via a
Kramers-Kronig analysis that there is an imaginary part of the phonon
frequency w = w(q) which describes the damping of the modes. (54)

Introducing for the complex w w = w(q) = w! + iw' we find that if
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Fig. V 3 Nouiaalized change in v2 versus log AT (From same
data as Fig. V1.) Labeled by mode and scattering
angle. 50% intercept AT corresponds to wt = 1,
(The L, 6= 90" data points are omitted for clarity. )

Typical error bars for the L and T1 1 iodes are

indicated,
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TABLE V 3

SUMMARY OF PARAMETERS FOR TEMPERATURE DISPERSION FIT
OF (Av )2 TO SINGLE RELAXATION FORMULA ®

Mode q

( 105 cm
L 2.72
L 2.07
() 2.72
(e 2.01

a

b

D chosen for best fit, D
o) o)

g at ¢(q) = -45°,

W
1

) (IOIQ‘ad. [sec.)
12.43
D.54

5.46

4.17

(wr)AT

(c®

4,0+¢. 4
2.5%.,8
1.8%.3

1.3+.3

¢ Background slope of --2.5%/(?o substracted before fitting,

D (b)

(%)

2.1
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Fig. V5 Superimposed T1 Brillouin component traces, AT = 0
shows instrumental linewidth. AT = 1.24 C° shows
maximum broadening. (In the euperposition the pesks
have been centered on the same line and made to

coincide at the peak. )}
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w2 - o (wz -wz)/[1+iw-r]
o0 o0 [e]

then

o = wi - (w?o - wi)/[ 1+ (w'T)z]

and

H

w'' = (wf0 - w(z))-r /14 (w’-r)z] )

ool =

assuming that (w?o - wi) << wozo so that v'" <<w'. We see that in this
approximation we have the expression used previously to fit the
velocity dispergion and we have the phonon relaxation rate w'' due to
the single relaxation mechanism. w' is maximum at wit = 1, where

it has the value
o ~ l 2 2 41 g_]_'_ :
(w )MAX'Z(“w'wo)““ 2(“00'“’0)'

The Brillouin component linewidth is just 2u' so we have the
prediction that the maximum broadening of the Brillouin component
is just equal to (ww - wo), the total frequency dispersion,

The convolution which gives the linewidth of the experimental
spectral trace is very complicated. We will make the gross
simplification that we can take the maximum difference in observed
lirewidth and instrumental linewidth (1. 2 GHz) as giving the maximum
Brillouin component b.oadening. Doing this we find the maximum
change in the T1 linewidth was , 63 GHz and the meximum change in
the L linewidth was . 37 GHz. For comparison the total dispersion
was . 60 GHz for the T1 mode and . 45 GHz for the L. mode for the
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respective § directiuns. The agreement is satisfactory.

The detailed shape of the curves of excess linewidth versus AT
does not fit the prediction but this is believed to be due to the con-
volution problem., The maximum occucs at the expected AT and the
magnitude of the maximum linrewidth increase agrees with the total
dispersion. Thus we feel quite confider’ in our interpretation.

From the temperature dependence cf the Brillouin shifts
away from the regions of relaxational dispersion we have extracted
velocity temperature coefficients. These are given in Table V 4
for the L. and T1 modes. In some cases especially for the T1 mode

the coefficients seem to change near T_, so we have given values

Cl

for the regions above and below TC.

The slopes and their difference above and below TC are not
explained by the theory to be given in this thesis. The observed
velocity changes are equivalent to change= in elastic constants of
from < 200 to 2000 ppm/Co. These values are typical of most
crystalline solids.

The crystals used in this study were conditioned in the polar
phase by "poling' with a 5 kV/cm dc electric field applied along the
ferroelectric axis (b). This was applied in the -b direction. (We
take the convention of calling +l; the direction for which Q, G and ¢
form a right handed triad.) Call this a left handed sample. A right
handed sample (an electrical twin) can be made by poling the crystal
with the field parallel to {3\ A left handed sample has opposite signs
of its piczoelectric coefficients from a right handed sample but its

elastic stiffness coefficients are the same. We checked in a few

cases and found the Brillouin shifts not to depend on the sample
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TABLE V 4

(010) PLANE VELOCITY TEMPFRATURE COEFFICIENTS

0(q)

=17

-30

-20

15

55

o]
%]

T>T

Temperaiure Coefficients (m/3ec. CO)

Ll

T <T

3.8

2.9

5.6

T>T

3.0

2.3

5.3

5.1

2.7

2.6

5.8

6.5

3.2

3.0

IiRHI A,

1K
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| handedness but for consistancy all work reported here was on left
handed samples. The poling was done at the initial lowest temperature
of each ternperature run. The crystal electrodes were then shorted
a.d remained so as long as the temperature was being increased. The
crystel was repoled after each termperature decrease,

We went to this care in poling the samples to make sure that

they were single domain during our measurements. In some later

work we found that the domain walls could sometimes be visible in

55
the laser beam, () This allowed us to check our poling procedure.

We found that unless the sample had been cooled from T greater than

T _, with a field applied, poling at T less than T did not give a
C C
permanent single domain. We then prepared a permanent single

domain sample by cooling with field applied and ran spectra at

s R TN

¢$(q) = -45° versus T. Complete agreement with earlier work was
obtained.

Field Dependence of the Brillouin Shifts (s¢)

We studied the effect of dc electric fields applied parallel to
the ferroelectric (b) axis of TGS.

The crude test for an effect was to hold the sample at TC and
run spectra with the electrodes shorted and then with 3 to 4 kv applied.
The samples were all about . 7 cm thick so this gave fields of about
5 kV/ecm. We observed tnat for the directions in which temperature
dependent Av had been observed, the L. and T1 mode component
shifts decreased with applied field. Moreover the magnitude of the
maximum change with field observed was the same as the total
change observed when the temperature was varied. The field gave no

effect for directions in which there was no temperature effect and the
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T2 mode (HV scattering) showed no ficld effect.

Before we could interpret this as a field dependent relaxation
effect we had to look for a field dependence of the refractive indices.
This was done by looking for a change in deflection of a laser beam
traversing a prism of TGS. We found no detectable effect for fields
up to 8 kV/c - We could have detected changes of . 05%. Since
the refractive indices are independent of field, -(: was independent of
fleld and we may interpret the changes in Brillouin shifts as
changes in the L and T1 mode velocities.

We studied the field dependence in detail for ¢(q) = -45°, We
limited tke fields to 7. 5 kV/cm because of trouble with electrical
breakdown at 9 kV/cm, With theae fields we could change the T1
mode shift almost back to the minimum value that it has for T less
than TC and to reduce the L. mode shift about half way to its low
temperature value,

The theoiy to be presented in Section VI predicts a field
dependent relaxation rate at TC propertional to E2/3. Figure V 6
shows the normalized change in (Av)2 for the T'1 mode plotted
against log E2/3. The data in this form is fit very well by the single
relaxation time (predicted) function wr /(1 + (wr )2) with
('r)-l =2,0x 1010 ]"22/3 gec. _l, E in kV/cm, and (vfc - vi)/vi = 15%.

Using this relaxation rate we predict that the wr = 1 occurs for
the L mode at E = 10 kV/cm well above the fields applied. This is
consistant with the emall change in the L shift which began to appear
for E")'/3 > 2(kV/cm)2/3.

We also observed the T1 Brillsuin component linewidth

broadening near the field giving wr = 1. As in the case when
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temperature was varied the maximum increase in linewidth of
.6 GHz was consistent with the total frequency di- ersion. Thus
the single relaxation description of the fie'd effe .. is firmly

established.

gt‘lg_g_x_‘_ Observations

We made a study of the temperature and field dependence of
tne Brillouin shifts for various directions of § in the (010) plane in
addition to ¢ (q) = -45°, Using (v00 - vo) as a measure of the
coupling we found the coupling to be very anisotropic but the
temperature dependent relaxation time was independent ofﬁ within
our experimental uncertainty of £10%. This anigotropy iaz shown
in Fig. V7 The range of directions over which the T1 mode could
be studied was limited by the intensity variation for this component.
A more careful study with polarized spectrs to select just the T1 mode
(VV) rould extend the range of angles somewhat. (Re Section IV)

The curves drawn through the data points are just guesses of the shape.
Calculations performed with the theory of Section VI have shown that
the velocity difference versus a has no simple closed expression and
is very sensitive to the vaiues chosen for the electrostriction
coefficients. We do find an interesting correspondence between the
coupling anisotropy pattern for the L. mode and the thermal expansion
measured by {zhkova et al. (7) The thermal expension pattern in
(010) plane showed maxima near the c directions. In Section VI we
will see that this pattern of expansion and the coupling anisotropy
are related through the same coefficients to the electric polarization.
The decrease in velocity for the L. and T?! modes for a 5 kV/cm

field applied parallel to-h and the sample at T was determined as a

C
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function of the q direction in the (010) plane. The results were
consistent with the above temperature scan work in giving the relative
coupling versus q but the magnitudes of the velocity changes were all
smaller, We believe this to be due to using too small a field to
depress the velocity to the wr <<1 limit, Using the field dependent
relaxation time previously observed we can calculate that a field of
68 kV/cm would be required to take the L mode 80° scattering angle
frequency through at least 80% of its dispersion at any 3 in the (010)
plaue, Similarly it would take 23 kV/cm for the T1 mode,

We studied the temperature and field dependence of the T2 mode
(4 in (010) plane and displacement parallel to b--a pure shear mode)
ir HV spectra. No relaxatiop zifects . =ar TC were detectable, The
Brillouin shifts and hence the velocities were essentially independent
of T and fleld. For example at ¢(q) = -45° we observed the velocity
to show only a slow decrease with temperature {2 m/sec, /Co)and a
small increase with applied field at TC' Thus 1t appears that the
T2 mode 18 not coupled to the relaxing entity which effects the L and
T1 modes.

Finally we studied the temperature dependence of the
longitudinal mode Brillouin component with a parallel tc S The
Brillouin shift and hence longitudinal velocity was found to be
essentially temperature {ndependent showing only a slow decrease
with temperature of 1. 8 m/sec. /C°%, Thizs is surprising since the

(+8 )

low frequency work showed an anomoly in s__.. This shows

22

that the coupling 18 non-zero but our observation agrees with that of
5

O'Brian and Litovitz.( 3) We will show in Section VI that this

discrepancy has an especially interesting explanation.
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Critical Opalescence

As T approaches TC the observed pole in the dielectric constant
€ shows that the ihecmal fluctuations in the y component of the electric
polarization P‘2 cccur easily and so get large. Ju.t as in liquid-vapor
critical phenomena onc might expect that if the optical polarizability

of the crystal was modulated by AP, a large increase in light scat-

2
tering would occur as the fluctuations in P2 get large near TC' A

more cetailed argumen! appropriate to TGS, which is non-piezoelectric

in the non-polar phase, indicates that the total scattering intensity

(60) . .
C bui
that its spectrum centered at the incident frequency will become very

due to polarization fluctuations will be constant through T

narrow near TC.

We looked for critical opalescence of this latter type after most
of our Brillouin scattering work was completed when very high
quality samples became available. Fig. V 8 shows the gcattering
spectrum of a good, freshly polished sample of TGS at TC' The
relatively low amount of elastic scattering shown in the central
component showed no temperature dependence as T moved away from
TC so is believed due to crystal imperfections. We conclude that the
optical dielectric constant gived an integrated VV scattering cross

section small compared to that for Brillouin scattering in TGS.
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Fig. V8 VV spectrum, ¢(q) = -45‘,’ showing Rayleigh component

{R), T1 component, and L component at TC.
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SECTION VI

A THERMODYNAMICT POTENTIAL THEORY FOR THE STRAIN AND
POLARIZATION FLUCTUATION DYNAMICS IN TGS NEAR

ITS FERROELECTRIC PHASE TRANSITION

In Section V we gave the experimental evidence that showed that
the L and T1 acoustic modes of the (010) plane in TGS are couplec “o
a single relaxing quentity (i. e., are coupled to a quantity having an
exponentially damped autocorrelation function). The degree of
ccupling indicated by the total dispersion is different for the twe modes
and for different a directions but the temperature-freaquency dependence
was always the same indicating that there is only a single te:nperature
deperdent relaxation rate for all a in the (010) plane.

In thi~ section we will give a phenomenological theory of the
phase transition in TGS based on a model free energy expansion with
electrostrictiv terms and a simple application of the ideas of
jrreversible thermodynamics. With this theory we show that relaxing
therraal fluctuations of the spontaneous polarization of ferroelectric
TGS can account for all of our velocity dispersion observations near

T This includes the selection rule that the T2 mode is not coupled

tocthe polarization fluctuations, quantitatively relating the temperature
and field dependent relaxation rates, and quulitative agreement on the
anigotropy of the total dispersion in the (010) piane,

We begin with . discussion of the general behavior of ferro-
electrics near the Curie temperature. We show how the dirleciric

behavior can be given a unified description using an appropriate

wl b
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thermcdynamic potential. With this ag background we give a
thermodynamic potential for TGS expanded in the variables sirain and
polarization along the ferroelectric axis, From this potential we
deduce the equilibrium polarization and strain as functions of temper-
ature. We then derive equations relating the spatial Fourier components
of the fluctuations from their equilibrium values of polarization and
strain. Assuming that fluctuations of polarization decay exponentially
we derive the temperature dependent relaxation rate and the frequency
dependent elastic stiffness constants which predict a single relaxation
time dispersion in the acoustic mode frequencies for a given wave
vector 3. From tke measured relaxation rate we can extract the
kinetic coefficient of the polarization fluctuations.

Using dielectric and electrostriction parameters from the
literature we evaluate our derived expressions and give the calculated
coupling anisotropy for (010) plane acoustic modes in TGS.

Next we derive the effect of an applied electric field on the
fluctuation dynamics and find a field dependent relaxation of the
polarization and an associated velocity dispersion,

Finally we derive the fiuc*nation dynamics for the case of .c;
parallel to the ferroelectric axis. Here we must add a term to the
free energy to account for the electrostatic energy of the polarization
fluctuations. This leads to a fast and essentially temperature
independent relaxation rate so that no temperature dependent relaxation

should occur in agreement with experiment.

Ferroelectric Phase Transitions

As was stated in Section '/ a ferroelectric crystal i8 a polar

class crystal exhibiting a pyroelectric polarization which can be
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reversed by an applied electric fieid. Our interest in ferroelectrics
centers around the phase transitions that they exhibit. We shall see
that the crucial property of these crystals near the ferroelectric phase
transition (polar to non-polar) is their large, temperature dependent
dielectric constant which increases like | T - Tcl 1 pear To. A
crystal showing this behaviur is said to obey the Curie law, in
analogy with ferromagnetic transitions which exhibit a like behavior
in the susceptibility. Ferroelectrics exhibiting simple second order
transitions in which their thermodynamic variables are continuous
have their spontaneous polarization Ps go continuously to zero as T
approaches TC in the polar phase with Pz proportional to AT. Such
behavior is expected of the ordering of any system in which the long
range forces predominate, It is the analog of t:"2 behavior predicted
at the critical point of a van der Waals gas with Pe replacing the
liquid-gas density difference and the dielectric constant replacing

the isothermal compressibility.

(¢t) (¢c2)

The recent dielectric measurements of Craig and Gonzalo
on TGS were carried to great precision in order to look for any

deviation from the behavior

c'l = const x {A‘I‘)Y

with y = 1. Gonzalo found y = 1. 00 £ , 05 carrying the measurements
in to within 50 x 10~ C° of T,, before being limited by the sample qualit,
Gonzalo also found

2 1. 0%, 1
Pe = const x (TC - T)

near TC. Thus TCS seems to be an outstanding example of a system

c=t. =




s

b,

exhibiting classical behavior in the region of a second order phase
transition. This is perhaps not surprising since the predominant
forces in ferroelectrics are believed to be electrostatic and therefore
long range.

The general features of ferroelectric crystal properties and
their phase transitions have been very successfully described in a
unified manner through the use of thermodynamic potentials, We
will review a simple illustration of this by showing how the ¢’ ctric
properties of a ferroelectric having a second order transi* -an be
deduced from a model thermodynamic potential.

We use the Gibbs function G(T, X,, P), a function of temperature,
stress and the polarization comporent along the furroelectric axis, We

expand this as

2

G(T, o,P)--;-xP +4lep4+. .

and assume that this expansion holds with the same coefficients
throughout the transition region. We take only even powers of P to
conform tc centror ymmetric symmetry, We assume that ¢ is greater
than zero and independent of temperature and that x = (4x/ C)(T-TC)
with C > 0, -We assume the expansion converges rapidly enough to
neglect the 6th and higher order terms. We now find that the system
will underge a second order phase transition at TC' First we compute
the equilibrium polarization for the condi tion that the electric field
(generalized force) conjugate to P is zero. We calculate F in the

standard way as a partial derivative of G giving

8 G 3
E°-5T3-= xP+EP .
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Setting E2 = 0 we find that G is minimum if

P2=0 forT>TC

and

2 A 2
P2 =X/t PS forT<TC.

Thus we find that there is no spontaneous polarization above TC but

that below TC‘ P2 has two (&) stable non-zerc values and the square

is proportional to AT.
Next we derive the reciprocal dielectric susceptability

_8E
P
equi. equi.

With AP the deviation of P2 from equilibriun., above T

C
E = XAP + £(AP)S

80 that the reciprocal suscegtability is

OE

Below T C

E=XAP+ 3§P2AP = -2XAP

go that the reciprocal susceptability is

6E

= -2X .
P AP=0

TERTERRHTAITR
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II}

Now 47a e, so that above T r:zg 4z /X = C/(T - TC) and

27 % C
below TC €y = -4r/2x = (L/2)/(TC - T).

Thus we have reproduced the behavior described earlier for
ferroelectrics near TC with P continuous throughout the transition
which is therefore of second order.,

Further discussion of thermodynamic potentials (free energies)
in ferroelect rics can be found in the review by Jona and Shirane. (63)
They have based their presentation on the work of Mueller, Cady and
Devonsh've. They give a very useful bibliography of earlier reviews
on ferroelectric crystals at the end of their first chapter,

The idea of producing second order transition behavior from a
free energy expansion goes back to L. D. Landau who gave a theory
of second order transitions in 1937, “*) The basic idea is to identify
a variable n labeled the order parameter in terms of which the free

energy expansion has the form
_1 2,1, 4
F= ER(T - TC)ﬂ + 4—§‘n +....

We know from the previous ‘liscussion that this model free energy
will yleld & thermodynamic second order transition if £ > 0.

In a ferroelectric we see that the spontaneous polarization
corresponda to the order parameter. In TGS the equilibrium P2
measures the average degree to which the unit cells of the
microscopic structure have .he same handedness.

We wish to emphasize that the phenomenological theories of
ferroelectrics really represent particular cases of the general

approach of free energy power series expansions. This more
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general viewpoint is well documented in the Russian literature. A
good introduction is found in Statistical Physics by Landau and
Lifshitz.

Because the spontaneors and induced polarizations can be
large in ferroelectrics the coupling of strain (or stress) with electric
polarization (or field) is important in understanding the behavior
near TC' TGS is centrosymmetric in the non-polar phase so the
coupling between polarization and strain is expected to be electro-
strictive, that is with the strain proportional to Pz. it is crucial
in developing a phenomenological theory for TGS to include
electrostrictive terms in the thermodynamic potential to account
for the (morphic) piezoelectricity of polar TGS and the coupling
of strain waves to polarization fluctuations,

Having calculated tue temperature dependence of the
equilibrium dielectric properties we could now go on to calculate
the mean square fluctuations as well as the time dependence of
the fluctuations of P, These fluctuations become very large and

slow as X gets small near T They are an example of critical

point fluctuations. Actually iince the fluctuations of interest are
inhomogenous, we can not consider polarization fluctuations
separately from the inhomogeneous strain fluctuations which can
not be eliminated (clamped). Therefore we will turn to the detailed
analysis of the equilibrium properties and fluctuations derived from
a model tnermodynamic potential for TGS which includes elastic
and electrostrictive terms. The derivation is a general one for a
ferroelectr:c which is centrosymmetric in the non-polar phase and

has a unique ferroelectric axis direction.

S U e s -t P Tl e i = e = TR
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Thermodynamic Potential Derivation of the Equilibrium Properties
of TGS

1
O'Brian and Litovitz(g ) were the first to combine the Landau-
Khalatnikov derivation of the relaxation time for order parameter

(66) (67)

fluctuations with the Devonshire theory of ferroelectricity

in a detailed calculation of the elastic properties of TGS near TC'
We will follow therr in using the same model thermodynamic
potentiai expansion.

Our analysis will lead to more detailed predictions of
relaxation effects in the elastic constants but qualitatively they are
the same as the results derived by O'Brian and Litovitz.

We will use the Helmholtz free energy A(T, xi, Pz), a function
of temperature T, strains xi, and the y (b) component of polarization
P_. (The ferroelectric axis is the C

2 2
metry in a monoclinic crystal.) In the derivations using this free

axis as is required by sym-

energy we will ignore the difference between isothermal and
adiabatic fluctuations. The fluctuations observed in light scattering
are approximately adiabatic while the fluctuations calculated with
the Helmholtz free energy are {sothermal. From the expression
glven by Cady for the difference between isothermal and adiabatic
elastic compliance coefficients we have calculated the conservative
estimate of 30 ppm for this difference. This is based on the back-
ground thermal expansions observed by Ezhkova, et al. (¢8) of
19 ppm/C° and a heat capacity 2 2 x 1(')(7 e)rgs/cc C® near T {c2)
70

Our model for the free cnergy is

1P 2 1. .2 1, 4
- = - + - =
A Ao chkxjxk ngijZ + 2)( P2 + i ng

‘I.ﬂ
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where A0 is the free energy at temperature T and zerc strain and
polarization, The coetficients are the elastic stiffness constants Cjk'
the stress electrostriction constants gzj, the inverse susceptability
X and a dielectric nonlinearity parameter {§, They are in general
temperature dependent but we assume that they vary 1. .othly

through the transition. Specifically our model will be that

with C> 0, £ > 0, and that the coefficients other than x have
negligible temperature dependence.

The coupling between P2 and strain is through an elecirostriction
constant rather than directly through a piezoelectric coefficient. This
avoids assuming temperature dependent piezoelectric coefficients
which go to zero as (TC - T) > 0 goes to zero. This is an essential
element of Devonshire's approach to a theory of ferroelectricity. The
polar (piezoelectric) phase is to arise from the spontaneous polariza-
tion and strain of an initially centrosymmetric crystal form, (TGS
goes from monoclinic C2 to monoclinic CZ/m as T increases
through TC.)

Below TC' P2 will have a spontaneously non-zero value, Due

to the coupling between P_ and strains there will also be spontaneous

2
gtrain,

We calculate these in the standard way by minimizing the free

energy thereby requiring that the electric field E2 and the stresses

Xj be zero for equilibrium at temperature TC'

o
x - LA _ P 2

PR * 894F,
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A 3
U | SRS 4
Fp = o, " XPp By * 28y5Py
Setting Xj and E2 equal to zero and looking for minima in A we find
2 _ 52 _ X
(Pylg = Pg = - (& - 2gsg)
and 2

(xk)o & -Sjkgszs

where we are denoting the spontaneous polarization as Ps' ] ik is the
matrix of elastic compliance coefficients (inverse to the elastic

stiffness matrix) and the scalar constant gsg is gy ja jkg2k' By

agssumption X is proportional to (T - 'l‘C) so that Pz and also (xk)o
must go to zero as (TC - T).

Above TC only P2 = 0 and X,

the average polarization and strain are zero,

= 0 glve zero field and stress so

The temperature dependence of Pz has been checked Lty
(4d)

Gonzalo, The spontaneous strain prediction has not been

critically tested near T, but the x-ray measurements of Ezhkova,

C
Zhdanov and Umanskii(”) showed that the thermal expansion in

. in TGS.

various directions has a change in slope at T(.

Thermodynamic Fluctuations in TGS

We now consider fluctuations. We wigh to derive the equationas
giving the fluctuations in stress and field from their equilibrium
values in terms of the fluctuations in strain and polarization from
their equilibriurm values. We do this by linearizing the equations

for stress and field to give
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P
= + 2 ;
Xj cjk(Axk) ?gszz(APZ)

E (Ox )+ (x+ 3§P + 2g2jxj)(AP )

g = 2By Py0x;

where Ax, and AP_ are the fluctuations about X, and P_ and X, = AX

k 2 k 2 i ]
and ‘r_"2 = AE2 in the absence of applied stress or field.
Above TC substitution of the zero equilibrium values of strain

and polarization into the linearized equations gives

Xj = jk(AA )

E2 =X (APz) .
This shows that the strain and polarization fluctuations are uncoupled
above TC. For this case the dynamics of the fluctuations can be
treated separately. We will return to this below,

Below TC substitution of the spontaneous strains and polariza-
tion into the linearized equations gives

X, = jk(Ax ) +2g, P (AF,)

2
E2 = ngjPe(ij) + ZEPS(APZ) .
Light scattering experiments prche particular Fourier components
of inhomogeneous fluctuations in the scattering volume. Hence it is
convenient to treat the fluctuations in terms of spatial Fourier

components. As in Section I we define spatial components as

y(@) = -%-fv y(f‘)e'iﬁ"rdar
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for any variable y(r) with V the scattering volume. We will simplify
the notation by labeling the components with the letter q rather than
q but we will need to remember that there is a directional dependence.

In terms of spatial Fourier components we find for T below T,

-

Xj(q) =c (q) + ZgszBPz(q)

P
Kk

_ 2
Ez(q) = 2g2jP x,(q) + 2§P3P2(q) .

8]

Polarization Fluctuation Dynamics

The polarization fluctuations are assumed to be thermodynamic
fluctuations which decay exponentially or more precisely tie
fluctuations show an exponential time correlation. We follow the
general treatment of the non-equilibrium thermodynamics of order
fluctuations near a second order transition given by Landau and
Khalatnikov () in calculating relaxation rates.

Treating the polarization fluciuations a8 being non-propagating

damped modes represents a particular limit of the microscopic

(12) (73)

viewpoint of ferroelectrics put forth by Gingberg and Cochran.
In this view the dielectric anomoly is due to the presence of a
temperature dependent, low frequency, infrared active, optical
lattice vibration, First approximations have taken this mode to be
harmonic and therefore lossless. Experiments seeking to find this

type of behavior have been unsuccessful except in SrTiOB(n) and

even there the losses were large near T In the other cases the

C’
damping is very large so that the mode appears to have a complex

frequency with no real part, In these cases the thermodynamic

-..
I
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treatment may come closer to the true behavior.

We start with the kinetic assumption of non-equilibrium
thermodynamics that the rate of change of a fluctuating variable is
proportional to the thermodynamic "force, ' where tkis "force' is
the partial derivative of the free energy with respect to the variable,
evalrated at the instantaneous values of the fluctuating variables, In
our problem this is written as

aPz(q) _ BA E @)
9t -Y 8 P,(q) YR\

Y is called the kinetic coefficient. Note that we are applying the idea
of relating variables and forces to the Fourier components of
inhomogeneous fluctuations in P2. We assume y to be a constant
but it is not inconceivable that there are cases where it depends on
g. One m: ght expect shorter wavelength polarization fluctuations to
decay more rapidly for a given Ez(q), i. e. that y increases with q.

We can apply the kinetic equation directly in deriving the
dynamics above TC. Here we find

P,(a) = -YXP,(q)

so that the relaxation rate is

-1_
T> - YX 3

which is proportional to (T - TC) because of the assumed teraperature
dependence of X .

Since the polarization and strain fluctuations are uncoupled
above TC we do net expect the Brillouin components to be effected

by the temperature depondent polarization dynamics. The spectrum
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of the polarization fluctuations is a Lorentzian about Aw = 0 with
full width at half maximum of 2/~ 5+ Thie spectrum could show up
in light scattering spectra but as discussed at the end of Section V¥
it did not appear for TGS.

Dynamics ot Coupled Fluctuations Belowl‘C

We now wish to determine the dynamics of individual Fourier

components of the coupled strain and polarization fluctuation below
TC' Even in the phenomenological theory being presented here
this is a difficult problem to solve exactly. For a given q we must
reduce the 7 x 7 matrix relating the six strains and the polarization
to the six stresses and the field to a 4 x 4 eigenfrequency problem.
The (complex) secular equ ition would have four complex roots.

Rather than attack the problem directly in complete generality
we will use the approximation of separating the coupled fluctuations
by their dynamrics. In general we expect to find one pure damped
solution and three solutions with non-zero real parts of their
frequencies. We will separately look for pure damped solutions
and damped oscillatory solutions,

For example sufficiently near TC the pure damped (coupled)
fluctuation relaxation rate can be calculated very simply from the
kinetic equation by assuming the polarization fluctuations to occur
so slowly that the strain follows them easily giving fluctuations at

constant (zero) stress. For this case we find

Isz(q) = - yEZ(q) = -y2(¢ - Zgag)PzPZ(q)

go that P2 relaxes with the rate
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-1 _ 2
Tx T Y2(¢ - 2gsg)PS

which is prop.rtional to (TC - T) due to the factor Pi. gsg is the
scalar constant ngBjngR' Substituting the derived expression for
the spontaneous polarization into this relaxation rate gives

-1
T

X=2yx.

This shows that for a given AT the relaxation rate is twice as
large for T less than TC than for T greater than T . which is

C
similar to the results for the dielectric constant of a ferroelectric

near TC'

The condition that these fluctuations occur at constant stress

implies that
x (q) = -Zskjgszst(q) .

Therefore associated with the (critical) fluctuations in polarization
there is a strain fluctuation. Even if the polarization fluctuations
are not coupled to the optical dielectric tensor the strains are and
they should give a central component to the light scattering spectrum
whose width is proportional .o the relaxation rate for the fluctrations,
For later reference we calculate the meen square fluctuation in the
straln due to these dainped fluctuations. From the constant stress

condition we have, taking thermal averages

< lxk(q)|2> i} 4(8kjg2j)zpz<lpz(q)l?>'

The mean square fluctuation in polarization is easily calculated to
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be
1
<IP (q), > ";'r Z
2(¢ - ngg)PB
Therefore
)2
Gl > 5 -
2(5 - 2gsg)

Later we will compare this to the mean strain for an acoustic mode

(Iafy <X —
pv
For the strain fluctuations corresponding to the acoustic modes
we seek oscillating solutions of the form exp(-iwt) with w = w(q) to be
determined. We are interested in that part of the polarization
fluctuations which is oscillating at the same frequency as the strain

waves so that 1'32(q) = -inz(q). If we substitute this into the kinetic
equation we find

w( ) -
-4 = - P (q) 2§P (q)+2g2jPij(q)
8o that
8 P,(q) _ 28,;P,
BT
ij(q) 26P_ + 1 y

where w(q) is the frequency of the strain wave of interest.
In orier to apply the equations of motion for the strain waves

that we derived in Section II we must calculate the effective elastic

i
H fh“.. m

T
IR
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constant

From the equation relating the Fourier components of stress,

strain and polarization we have 1

9 X (q) 5 P, (q) |
2q CP + 2g P 2
Bxkiqi jk 2j s 5xk7q5

If we now substitute the expression that we derived for the derivative

of P2 with respect to strain we find that the effective elastic constant

is given by

P 2 2

which we rewrite as

2g,.8
cjk(q) = cjl; - __Zgz_k/ [1+ {wiq)T]

with
-1 2
T = Y2§ Ps .

w(q) 18 still not determined. To complete the calculation we
must solve the acoustic mode eigenvalue problem with the (complex)
effective elastic constants that we have derived. This will yield an
equation for w(q)2 in terms of the complex elastic constants. Self

consistent real and imaginary parts of w(q) must be found which

satisfy this equation .
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The calculation as cutlined is formidable. Nevertheless

practical solutions are possible for TGS because the coupling is

weak, that is

285182k P
; ko ]
This allows us to write for each mode a dispersion relation of the
form
2 :
[wig)] 2 2 2 .
3 = vy -(Voo v, )/[1+iw(q)1-] .

q

Here the velocities are (real) roots of acoustic eigenvalue problems
and hence depend on the direction of q. v2 comes from the eigen- |
value problem using the ele=tic constants cg and v2 comes frormn the 3
eigenvalue problem using the elastic constants cE = cil? - 2g21g2j/§.

ij

By our previous assumption (vf - vg)« v,.2 so that the
imaginary part of the complex frequency w(q) i8 much smaller than

the real part w'(q) then we can write

2 1
V2 = __U_gg)_ = vwz = (Vw - V02 )/[1 + (U (Q)T)ZJ

" 2 2 b 2
@ (q) =1/2 (w_ SR R R CRCIR N

-1
Equations cf this form with +  proportional to AT were predicted by
Landau and Khalatnikov in their treatment of the relaxation of the

(75)

order parameter.

The physics of the velocity dispersion is as follows. For
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For sufficiently short wavelengths the strain fluctuations have very
high frequencies, If the fluctuations in P2 are considered to decay
exponentially then for sufficiently high frequencies {(or low relaxation
rates) they will not be able to follow the oscillating strain fluctuations.
Thus these strains will take place at constant P2(q) and so will be
described by c;:(.
relaxation rates) P2(q) hae no difficulty in following the strain

On the other hand, for low frequencies (or fast

oscillations. P2(q) adjusts to keep E2 small so that the strain
fluctuations occur at constant (zero) field and are described by
E P .
the constants ik = Cik " 2g2jg2k/§. These intuitive ideas are given
explicit expression in the equation of velocity dispersion.
The relaxation rate in the derived expressions of velocity

dispersion is

T = Y2§P2 .
8

The derivation assumed that the polarization fluctuations were
isothermal. Actually they are adiabatic. This difference is more
important for the polarization fluctuation dynamics than for the
strain fluctuation dynamics because temperature fluctuations are
strongly coupled to the polarization through 2§P§. Jona and
Shirane have worked out the difference between the adiabatic and

(6) The correction

isothermal inverse susceptability in TGS,
applies equally well to the relaxation rate. Above T, the correction
is negligible while velow Tc the inverse susceptabili;y and therefore
the relaxation rate for adiabatic processes is increased by 20%. We

have not applied this correction in comparing theory with our results.

Comparison with Experiment

We now have enough of the theory worked out to begin comparing

X
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it to the observations in TGS. The basic result from the velocity
dispersion with temperatur> measurements reported in Section ¥
is that they fit a single relaxation equation of the form derived

- C j T)
as the theory predicts and independent of q. ‘The magnitude of the

here. Moreover the relaxation rate was proportional to (T

relaxation rate can not be calculated from the phonomenological
theory here since y is an unknown parameter, Therefore we must
turn to predictions about the coupling to find additional confirmation
of the theory.

From the monoclinic macroscopic symmetry of TGS we know
that the matrices for c,, and g have non-zero components as

i (17)
iidicated in the following diagram:

-— ——

[ [ ® . [ ] 0

e o °*

® o o - o .

. . . [} . [}

® o L . ]
[ * - 9

In particular g2j hes non-zero components only for j = 1, 2, 3, and 5.

Therefore the matrix2 /¢ which gives the differences between

Ag2jg2k
P E :
the ¢” and ¢~ stiffness constants has the following non-zero components:

—1

3
3
=
]
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For -& in the {010) plane of TGS we showed in Section II that the

pure shear mode labeled T2 involves only the constants ¢ and

» Chyas
C46° We see that these constants are not coupled to the s(;inta‘i:aous
polarization and therefore should show no relaxation. In the experi-
ment we found only a linear decrease with temperature in the T2
velocities and no relaxation dispersion near T

this prediction.

C in agreement with

The quasi-longitudinal and quasi-transverse modes labeled L
and T1 for the (010) plane involve the six constants ¢y10 33’ 055,

5 and c,. all of which are coupled to the polarization, It

“13° ©1 35
is for these modes that we observed single relaxation time velocity
dispersion with temperature, Using the velocity difference (v, - v )
= (vP - vE) as a measure of the coupling of these modes to the °
pclarization we see that the coupling caa be very anisotropic since
it comes from differences in velocities calculated from two sets of
elastic constants each of which give an anisotropic velocity pattern
having no symmetry except a center of inversion. We believe that
this is the explanation of the anisotropy obgerved in the experiment
and shown on Fig. V 7.

We do find qualitative agreement for the relationship }are)dicted
"¢ and

the L. mode coupling anisotropy. The calculation of the spontaneous

by the theory between the thermal expansion measurements

strain with our model free energy showed that

) 2
(X)o = 8518y Fg -

Thus if a particular component of g, § is large then the pattern of

expansiecn might be expected to show a maximum in the j direction.
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Light scatteri ig and ultrasonics agree that s,_, is large (L, mode

velocity i8 minimum near c¢). The thermal ei:;ansion is observed
to be large and positive near the ¢ direction. Therefore it seems
that 893 is large and negative, If this is true then we expect that
Cag will show a large positive dispersion with temperature. This
agrees with our observations of maximum total dispersion for the
L mode near the & direction,

We have made an attempt to make a quantitative comparison
of the observed anisotropy and measured properties of TGS. Schmidt
and Pfannschmidt(“) and lkeda at al. (e0) have reported measurements
These measurements
Y3 for which

Schmidt and Phannschmidt argue for their smaller value. These

of the strain electrostriction constants sz.
agree within their precision of + 10% except for Q

measurements are reported in the x'y'z' = abc* axes. We compute
them for the rotated axes -a*-bc. We want the stress constants

gzj which we can compute from the equation

P
= 8y = %%k -

Using the elastic stiffness constants of Konstantinova et al. listed
in the appendix which are the constants cﬁ. (subject to correction
because they did not give agreement with the velocities that we

observed) as approximately equal to the constants cP we found

i
- ng = [2. 7T 1.7 -1.2 0 -2,0 0] + 10% (dimensionless)

Using these and £ = (6. 8 + 10%) x 10~10 cmz/dyne we calculated that
e /¢ was
‘i~ %y T “Bai8yj
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(21, i3, 15, . .16, |

13. 8.4 -9.3 . -10.

15, -9.3 1. . 11, .|%30% x 10° dynes/cm>

"160 "10n 11. . 14.

With this matrix we calculated ¢ from Konstantinova's cg.

these c! we calculated the velocities as a function of € in the (010)

P
ij Using

plane. The results are given in Fig, YI 1l in the form of a plot of
wr- vE) versus ©(q), the angle between § and & Comparing this
plot with Fig. V 7 we see that the agreement in magnitude and
pattern is poor.,

An improved calcuiation of the coupling anisotropy could be
done using ciI; determined from the light scatiering velocity
measurements, These clastic conetants should be better because
they are determined from more detailed velocity measurements

and because they are determined at T , where we wish to test the

C
theory.
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CALCULATED COUPLING ANISOTROPY

350

300

-10)

100}

5C

0(q) (o)

Fig. IV 1 Calculated coupling anisotropy, VP -vE =V -V
for L. and T1 modes, (010) plane.
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Opalescence Below IC

Earlier we showed that part of the strain fluctuation followed

the polarization fluctuations and were exponentially decaying, With
the electrosiriction constants us>d above we can row evaluate the
mean square strain due to this mode and compare it to the mean
square sirain in an acousticel mode. The result of this calculation
is that tiie damped strain fluctuations should scatter about 1% as
much light as a typical longitudinal mode, This amount of scattering
in the central component is completely negligible compared to the

extraneous elastic scattering i~ the crystal and so was not detectabie,

Kinetic Coefficient Evaluation

Accepting the theory as confirmed by the comparisons with
experiment pregented ro far we can relate the measured relaxation
rate to the known gpontaneous polarization and the unknown kinetic
coefficient and thus extract a value for the kinetic coefficient.

From the dielectric properties listed in the Appendix we

have 2§P§ -8.3x10°° (TC - T) (dimensionless). The measured
-] 10 -1

relaxation rate was (1) L. (3.4 £ 10%)x 10 {T. - T) sec. The theory

gives the relaxation rate below TC as it )-1 = )'2§Pz. Therefore

X= (4. 1 £ 10%) x 1012 sec, -1. Tnis is a reasonable value for the
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kinetic coefficient because the maximum relaxation rate for very
short wavelength components of the polarization fluctuations is
ar¥=52. x 102 s2c. 1. Thisis comparable to typical lattice
vibraticn frequencies in melecular crystals as it must be since

the vibration frequencies ultimately determine how fast microscopic

changes can take place in the structure,

Field Dependent Relaxation Rates

We return to the development of the theory now to show how it
yields predictions of a field dependent relaxation rate.

We treat the case of an applied dc field parallel to the ferro-
electric axis and zero stress at T,.. For this case our model

C
thermodynamic potential gives the equilibrium conditions

) 2
Xj . cjkxk+ gszz =0

3
E= ng + Zngij2
We solve these for the induced strain and polarization, We find

2
(e = -8,i85Fe

3 E

Pe = (¢ - 2gsg) °

Expressed in terms o’ Fourier components the fluctuations about
the equilibrium vsluer of the thermodynamic variables satisfy the

linearized equations
P .
= +
Xj(q) cjk xk(q) 2 gzk1 PePZ (q)

2
Ez(q) = 2g2kPe xk(q) + (3¢ - 2gsg) P P, (q)

4
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We again assume that
g 8A
F, (g = - YIB, - YFZ(Q)
and that the kinetic coefficient is the same as in the zero field case.

To study the strain dynamics we look for solutions of the form

exp(-iwt) in all fluctuations. This gives

2g
BP?(q) - 2k Pe
dx, (q)

k (3¢ -2gsg)Pe2 + iwl(g)
Y

so that the effective elastic constant is given by
3X.{q) 48,48
. 4> _ P _ 2372k n g
°jk'? bx, @ Gk @ ~zgsg 0@ 7

with
rr =yt - ngg)Pz

We rewrite v by substituting the value of induced field that we
derived and find
-1
T = vy (3 - 2gsg) 2/3
o7y F
(€ - 2gsg)

The structure and solutions of these equations are quite similar

to those for the temperature dependent relaxation. Since the coupling




matrix is esseatially the same and has exactly the same symmetry
we expect to see the Brillouin components which showed temperature
depondent relaxation to show a relaxational dispersion with field
with a relaxation time proportional to E2/3.

In the experiments with TGS this is exactly what was observed.
We were even able to get reasonable agreement between the
observed relaxation rate and the calculated rate based on the dieleciric
parameters and the kinetic coefficient determined in the temperature

experimer:.s,

Using the By i components discussed earlier and g,, calculated

ij
by Ballato(m ) from the measurements of cij by Konstantinova et al.

we 1ind that gsg = B21®1cBak = 2.3+ 20%) x 10~
-10

0 cm2 /dyne. Taking

cm2/dyne, and converting from stat volts/cm

2/3 -1
sec. .

10 E2/3

€ =(6.9% 10%) x 10
to kV/cm we predict -l (4.1% 50%) x IOIO(E kV/cm)
We observed that the relaxation rate was (2.0 £ 10%) x 10

( kV/cm)2/3. The agreement is satisfactory because the term
(¢ - 2gsg) which appears in the denominator in the calculated rate
almost shows a cancellation whereas the temperature dependence
study shows that the g2j are probably smaller than those used in the
calculation. This causes the Iculated rate to be high. Also
experimentally if the applied field across the sample electrodes does
not all go into inducing polarization of the crystal then the measured
rate would appear to be smaller for a given field,

Using the theory we can also calculate that the matrix giving

the total change in elastic constants for the field effect is 16% smaller
than that for the temperature effect, since 4/(3¢ - 2gsg) is calculated
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to be 16% smaller than 2/£. In the experiment we observed that the
coupling in terms of elastic constants was 25% less than for the

temperature effect.

-‘3 Parallel to the Ferroelectric Axis

So far th2 theory seems weil confirmed. But we notice that
our calculation explicitly shows that 59 is coupled to the polarization.
Therefore we would predict that the longitudinal mode with Ei parallel
to b should show a 3% change in v2 as T approaches TC' The experiment
does not agree. We saw nc temperature dependent relaxation for g
parallel to b. This observation shows that we have left something out

of our treatment.

The difficulty arises because we have ignored the electrostatic
energy associated with a Fourier component of the polarization
fluctuation. We find that we must modify the model free energy in order
to satisfy Maxwell's equations, The problem is quite analogous to the
lattice dynamics problem in ionic lattices in which the electrostatic
energy lift the degeneracy of the longitudinal and transverse optical

modes by increasing the frequency of the longitudinal mode. (82)

TGS is an insulator so we must satisfy the equation

s

V.D =V.(E+4r P)=q-(E(q) +4rP (@) = 0

Moreover the mode frequencies are small compared with the frequencies

of photons having the same q (IR radiation) hence B (q) i8 small. Therefore

UxE(q ¥ 0
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The polarization is essentially along the ferroelectric (b) axis.
The curl equation shows that E(q) is longitudinal, that is parallel
to ; . All together this shows that the field component parallel to

the b axis associated with Pz(q) is

' 2
E2 (@) = -4n Pz(q)m

with m the cosine of the angle between EI and the b axis. This field
is a vacuum field. The thermodynamic calculation gives the local
field. The total ''force'' on P2(2) is the difference between the local

field and the vacuum field

_ 9 A(q) '
Ez(Q) = —5—]?2_((17 - E2 (q) :

The effect of this modification is the same as if new terms of

the form
(1/2)4x m® P, (q)2
were added to the fluctuation in the free energy. Thra we must

repeat our derivation of the strain fluctuation dynamics using the

modified equation
E(q = 2g..P x(q)+(47rm2+2§P 2)P (q)
2 2j 8 5 2

Near TC 4wm2 is greater than2§ PS2 since 2§ P32 approaches zero,




0

i

162

The kinetic assumption now gives

9P, (q)
2 2 2 W
a?a)— -2 gszB/(47rm +2§PB +i‘;—)

so that the effective elastic constants are

9
(@) _ X,
jk 6xk (q)

P

(o4 Cjk

(47rm + 2§P 1 +iwlg)r)

with
L Y(47rm2 + ng:‘)

If y41rm2 is 8small compared with w(q) then we recover the
dispersion previously derived without coneidering electrostatics. In
the present experiment this 1imit would require m less than . 03 or
the § direction within 15° of the (010) plane. This was satisfied
during the (010) plane experiment.

For q parallel to b we have m2 =1, In this case we rewrite

the expression for the elastic constant as follows:

2
- - p 288y tP[ 1
%@ P) =g - —3 2
(+¢ P f200 (+tuwlg)r)

with EP 2

-1
7 = 4ry (1 +

b Y

-

Rtk iaba oo g 4% 0 aaagastns




1674
Now we see that at low frequencies which includes all light scattering
) o
frequencies in TGS, ( cjk - Cjk) is temperature dependent going
continuously to zero as T goes to TC from below. The relaxation
rate is8 much faster and is essentially temperature independent

near TC .

We have written the equation in a form which allows easy
comparison with the equations of the elastic constants for § in the
(010) plane. We see that the leading term of the amplitude of the
dispersion is the same namely Zgzjg2k/§ . But in TGS the extra factor

2
(¢P " /n
5 ) ~ (tjP’s2 [ =)

2
1+ gPs /27)

is much less than 1 for all T between room temperature and T.,. Thus
the change in velccity for the longitudinal mode propagating dc:wﬁ the

b axis was too small to be seen in our experiment. Notice that even if
the change in velocity had been detectable in this case, it would not have
involved q dependent relaxation and would not have given broadening of

the Brillouin component.

The anisotropic relaxation rate that we have derived implies that
there are directions of_cz between b and the (010) plane for which
particular acoustic modes would show large, temperature independent
acoustic single relaxation time absorption. This would be interesting to
actually observe as a check on the theory gince in the case of q parallel
to b we used the theory in a negative way by explaining why temperature
dispersion was not seen. With T at TC' the relaxation times found in
scanning the direction of g between b and the (010) plane could be used to

determine a value of y independent of dielectric measurements.
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Conclusions

We conclude from the agreement between the theory presented
in this section and the observations presented in Section V that
combining the Landau-Khalatnikov picture of the polarization
fluctuation dynamics with the Devonshire free energy expansion
applied to inhomogenous fluctuations yields a good description of the

behavior of TGS in the region of the phase transition.
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APPENDIX
Properties of TGS
Chemical
Formula(al) (NH_CH COOH) _H_SO
2 2 32 4
Formula weight 323 gm/mole
)
Density(m' 1.69 gm/cc
Crystallography
41
Symmetry above Te (average)
space group P21/m
(point group 2/m)
(41)
Symmetry below TC
space group P21
(point group 2)
(31)

Lattice constants
a =9.15, b_=12.69, ¢ = 5.7340.03 &
e} o] 0

] []
g =105° 40 £20
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Coordinate Systems

Coordinate systems and reference directions used in this
work are shown in Fig. Al ;* and ?:* refer to reciprocal
lattice directions. The choice of a and ¢ is that of Wood and
Holden, The direction of b = b taken to give right handed triads

of directions in the direct ¢:nd reciprocal lattices,

The most convenient right handed, orthogonal coordinate
system for this work is that of x' y' z' = abc*. Another natural
choice of right handed orthogonal coordinates would be
x"y'"z" = a*bc. This set of axes would be rotated by 15°40' about
-I; from the x'y'z' axes., Instead of this choice the ultrasonic study

-
of the elastic constants(a")

*
was done in terms of thexyz = -a -b ¢
right handed, orthogonal coordinates obtained by a rotation about
b of185 ®. When comparing our results to the ultrasonic velocity

measurements we will use the xyz coordinates.

Directions are labeled in the (010) plane by the angles between
- *
them and either the ¢ or ¢ directions. The sense of these angles

is important and is indicated in the figure.

Optical Parameters

The b axis coincides with the acute bisectrix (lowest index of
refraction). The other two principle axes of the optical dielectric
ellipsoid lie in the (010) plare. The obtuse bisectrix (highest index) is
3° from the c axis in the / - J) plane. The optic normal axis

(intermediate index) is perpendicular to the first named axes.
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Fig. A1

TGS

LATTICE OIRECTIONS AND COORDINATE

SYSTEMS

ok

ol

YI

XYZ = abc®

6(q)

2>

zl

B = 108° 490’
g 14 20’

o $(q)
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The refractive indices (room temperaiure and Na D light) are

n = 1484
P

n =" 556
m

n = 1584
4

The optic angle ia

(-)2v =61°18% 18" £+ 1%5¢
48)

=] * -
e, = C /1T ,.Cl

T>T, ct - 3560 C°

+
S

C

= 2.42

-10
£E=(6.9%.7Tx10 cm4 / (stat, coul)2 or cmzldyne

2 -
From 2§PS = 47r/€",, 2§PS =8.3x10 3 (TC - T) dimensionless
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Elastic Constants

Matrix notation. xyz coordinates of Fig. A l.

Cy, (Kornstantinova et al., reference (85):

(4,55  1.72 1.98 . -.20 .
1.72  Z.21 2.08 . -.036 .
1.98 2,08  2.63 . -5 .
. . . «95 . -.026|x1011 dynes/cm?
=30 =036 -.5 . 1.11 .
|« . . -.026 . 62|

Bjk’ the inverse matrix to cij computed by Ballato:(m)

(32,9  -2.9 -22.7 . -1.5 5]
-2.9 69.8 =57.7 5 -24,5 .
-22.7 -57.7 108.5 . 40,9 .
o 5 5 105.4 . 4.4 x 10“13 em?/dyne
-1.5 -24.5  40.9 . 107.3 .
. 5 5 4.4 5 161.2

ot

HIMHAN
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Electrostriction

Strain electrostriction constants in x'y'z' coordinates

Ineasured by Schmidt and Pfannschmidt (79) :

11

sz,=[1.a 2.7 5.0 . 0.1 .]+10% x10" cmzldyne

Strain electrostriction in xyz coordinates of Fig, Al :

Q2j=[1.3 2.7 -45 . .34 ,]x1071 cmzldyne

Using Cij of Xonstantinov et al, the electrostriction stress

constants are cal ulated from g2j = cijZ!c to be:

= gZJ =[ 2,7 1.7 -1.9 . -2.0 . ] dimensionless

RTPIRTITN T T
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Thermal Expansion(sﬂ

Ai 50° C

a 100 = 38 ppm/C

a 001 =14.5 "
alCl =14 "
a 010 = 64 i

Heat Capacity(sg)

Cp= .35 to. 36 cal/g C® from room temperature
through TC .

CE shows a maximum below TC. Highest measured

value was .48 cal/g CO,

W HIP e
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